彭水苗族土家族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
彭水苗族土家族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
彭水苗族土家族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
彭水苗族土家族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
彭水苗族土家族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

彭水苗族土家族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知x0,y0, +=1,不等式x+y2m1恒成立,则m的取值范围( )A(,B(,C(,D(,2 函数f(x)=lnx的零点所在的大致区间是( )A(1,2)B(2,3)C(1,)D(e,+)3 已知命题p:x(0,+),log2xlog3x命题q:xR,x3=1x2则下列命题中为真命题的是( )ApqBpqCpqDpq4 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=55 如果过点M(2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是( )ABCD6 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 则异面直线与所成的角的余弦值为( ) A B C. D7 已知函数f(x)=,则的值为( )ABC2D38 如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 9 若变量满足约束条件,则目标函数的最小值为( )A-5 B-4 C.-2 D310已知函数f(x)=lnx+2x6,则它的零点所在的区间为( )A(0,1)B(1,2)C(2,3)D(3,4)11某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为( )A560m3B540m3C520m3D500m312设f(x)(exex)(),则不等式f(x)f(1x)的解集为( )A(0,) B(,)C(,) D(,0)二、填空题13如图,长方体ABCDA1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是 14【泰州中学2018届高三10月月考】设函数是奇函数的导函数,当时,则使得成立的的取值范围是_15设函数f(x)=,则f(f(2)的值为16ABC中,BC=3,则C= 17由曲线y=2x2,直线y=4x2,直线x=1围成的封闭图形的面积为18若非零向量,满足|+|=|,则与所成角的大小为三、解答题19已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.20 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 21设锐角三角形的内角所对的边分别为(1)求角的大小;(2)若,求22(本小题满分10分)选修41:几何证明选讲如图,AB是O的直径,AC是O的切线,BC交O于E,过E的切线与AC交于D.(1)求证:CDDA;(2)若CE1,AB,求DE的长23已知函数f(x)=aln(x+1)+x2x,其中a为非零实数()讨论f(x)的单调性;()若y=f(x)有两个极值点,且,求证:(参考数据:ln20.693) 24【常州市2018届高三上武进区高中数学期中】已知函数,若曲线在点处的切线经过点,求实数的值;若函数在区间上单调,求实数的取值范围;设,若对,使得成立,求整数的最小值彭水苗族土家族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:x0,y0, +=1,不等式x+y2m1恒成立,所以(x+y)(+)=10+10=16,当且仅当时等号成立,所以2m116,解得m;故m的取值范围是(;故选D2 【答案】B【解析】解:函数的定义域为:(0,+),有函数在定义域上是递增函数,所以函数只有唯一一个零点又f(2)ln210,f(3)=ln30f(2)f(3)0,函数f(x)=lnx的零点所在的大致区间是(2,3)故选:B3 【答案】 B【解析】解:命题p:取x1,+),log2xlog3x,因此p是假命题命题q:令f(x)=x3(1x2),则f(0)=10,f(1)=10,f(0)f(1)0,x0(0,1),使得f(x0)=0,即xR,x3=1x2因此q是真命题可得pq是真命题故选:B【点评】本题考查了对数函数的单调性、函数零点存在定理、复合命题的判定方法,考查了推理能力,属于基础题4 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法5 【答案】D【解析】解:设过点M(2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k22=0,过点M(2,0)的直线l与椭圆有公共点,=64k44(2k2+1)(8k22)0,整理,得k2,解得k直线l的斜率k的取值范围是,故选:D【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用6 【答案】D【解析】考点:异面直线所成的角.7 【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A8 【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础9 【答案】B【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系,直线系在可行域内的两个临界点分别为和,当直线过点时,当直线过点时,即的取值范围为,所以的最小值为.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算.10【答案】C【解析】解:易知函数f(x)=lnx+2x6,在定义域R+上单调递增因为当x0时,f(x);f(1)=40;f(2)=ln220;f(3)=ln30;f(4)=ln4+20可见f(2)f(3)0,故函数在(2,3)上有且只有一个零点故选C11【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,1),其方程为y=,那么正(主)视图上部分抛物线与矩形围成的部分面积S1=2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=2820=560m3故选:A【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题12【答案】【解析】选C.f(x)的定义域为xR,由f(x)(exex)()得f(x)(exex)()(exex)()(exex)()f(x),f(x)在R上为偶函数,不等式f(x)f(1x)等价于|x|1x|,即x212xx2,x,即不等式f(x)f(1x)的解集为x|x,故选C.二、填空题13【答案】0【解析】【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(1,0,1),=(1,1,1),=1+0+1=0,A1EGF,异面直线A1E与GF所成的角的余弦值为0故答案为:014【答案】【解析】15【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:416【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC=,又C为三角形的内角,且ca,0C,则C=故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围17【答案】 【解析】解:由方程组 解得,x=1,y=2故A(1,2)如图,故所求图形的面积为S=11(2x2)dx11(4x2)dx=(4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题18【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值三、解答题19【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d24d=0,解得d=0或4,当d=0时,an=2,当d=4时,an=2+(n1)4=4n2。(2)当an=2时,Sn=2n,显然2n60n+800,此时不存在正整数n,使得Sn60n+800成立,当an=4n2时,Sn=2n2,令2n260n+800,即n230n4000,解得n40,或n10(舍去),此时存在正整数n,使得Sn60n+800成立,n的最小值为41,综上,当an=2时,不存在满足题意的正整数n,当an=4n2时,存在满足题意的正整数n,最小值为4120【答案】 【解析】解:圆C:的标准方程为(x+1)2+(y2)2=4由于圆心C(1,2)到直线l:3x+4y12=0的距离d=2故直线与圆相交故他们的公共点有两个【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键 21【答案】(1);(2)【解析】1111(2)根据余弦定理,得,所以.考点:正弦定理与余弦定理22【答案】【解析】解:(1)证明:如图,连接AE,AB是O的直径,AC,DE均为O的切线,AECAEB90,DAEDEAB,DADE.C90B90DEADEC,DCDE,CDDA.(2)CA是O的切线,AB是直径,CAB90,由勾股定理得CA2CB2AB2,又CA2CECB,CE1,AB,1CBCB22,即CB2CB20,解得CB2,CA2122,CA.由(1)知DECA,所以DE的长为.23【答案】 【解析】解:()当a10时,即a1时,f(x)0,f(x)在(1,+)上单调递增;当0a1时,由f(x)=0得,故f(x)在上单调递增,在上单调递减,在上单调递增;当a0时,由f(x)=0得,f(x)在上单调递减,在上单调递增证明:()由(I)知,0a1,且,所以+=0,=a1由0a1得,01构造函数,设h(x)=2(x2+1)ln(x+1)2x+x2,x(0,1),则,因为0x1,所以,h(x)0,故h(x)在(0,1)上单调递增,所以h(x)h(0)=0,即g(x)0,所以g(x)在(0,1)上单调递增,所以,故 24【答案】【解析】试题分析:(1)根据题意,对函数求导,由导数的几何意义分析可得曲线 在点处的切线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论