




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
衢江区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 已知全集,则有( )A B C D2 若复数z=2i ( i为虚数单位),则=( )A4+2iB20+10iC42iD3 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A1:2:3B2:3:4C3:2:4D3:1:24 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A36种B38种C108种D114种5 已知函数,函数,其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )ABCD6 过点(0,2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( )ABCD7 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D48 已知函数f(x)=,则=( )ABC9D99 等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)10已知空间四边形,、分别是、的中点,且,则( )A B C D11某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()AB8CD12设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM二、填空题13已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想14如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是15已知各项都不相等的等差数列,满足,且,则数列项中的最大值为_.16已知函数,则 ,的值域为 【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.17设满足条件,若有最小值,则的取值范围为 18自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则的最小值为( )AB3C4D【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想三、解答题19已知集合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0(1)求AB(2)若AC=C,求实数m的取值范围20(本小题满分12分)设,满足(1)求的值;(2)求的值21在ABC中,D为BC边上的动点,且AD=3,B=(1)若cosADC=,求AB的值;(2)令BAD=,用表示ABD的周长f(),并求当取何值时,周长f()取到最大值?22若an的前n项和为Sn,点(n,Sn)均在函数y=的图象上(1)求数列an的通项公式;(2)设,Tn是数列bn的前n项和,求:使得对所有nN*都成立的最大正整数m23已知向量=(,1),=(cos,),记f(x)=(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)k在的零点个数24已知曲线C的极坐标方程为42cos2+92sin2=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;()求曲线C的直角坐标方程;()若P(x,y)是曲线C上的一个动点,求3x+4y的最大值衢江区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】A 【解析】解析:本题考查集合的关系与运算,选A2 【答案】A【解析】解:z=2i,=,=10=4+2i,故选:A【点评】本题考查复数的运算,注意解题方法的积累,属于基础题3 【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2R3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2R3: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键4 【答案】A【解析】解:由题意可得,有2种分配方案:甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法根据分步计数原理,共有323=18种分配方案甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共323=18种分配方案由分类计数原理,可得不同的分配方案共有18+18=36种,故选A【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法5 【答案】 D【解析】解:g(x)=f(2x),y=f(x)g(x)=f(x)+f(2x),由f(x)+f(2x)=0,得f(x)+f(2x)=,设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h(x)=恰有4个根,则满足2,解得:b(,4),故选:D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键6 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx2,即kxy2=0,若过点(0,2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d1,即1,即k230,解得k或k,即且,综上所述,故选:A7 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得8 【答案】A【解析】解:由题意可得f()=2,f(f()=f(2)=32=,故选A9 【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力10【答案】A【解析】试题分析:取的中点,连接,根据三角形中两边之和大于第三边,两边之差小于第三边,所以,故选A考点:点、线、面之间的距离的计算1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题11【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C12【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B二、填空题13【答案】1【解析】14【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题15【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.16【答案】,. 【解析】17【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,18【答案】D【解析】三、解答题19【答案】 【解析】解:由合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0A=x|1x6,C=x|mxm+9(1),(2)由AC=C,可得AC即,解得3m120【答案】(1);(2)【解析】试题分析:(1)由 ,又;(2)由(1)可得试题解析:(1),3分,6分(2)由(1)可得8分,10分12分考点:三角恒等变换21【答案】 【解析】(本小题满分12分)解:(1),2分(注:先算sinADC给1分),3分,5分(2)BAD=,6由正弦定理有,7分,8分,10分=,11分当,即时f()取到最大值912分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题22【答案】 【解析】解:(1)由题意知:Sn=n2n,当n2时,an=SnSn1=3n2,当n=1时,a1=1,适合上式,则an=3n2;(2)根据题意得:bn=,Tn=b1+b2+bn=1+=1,Tn在nN*上是增函数,(Tn)min=T1=,要使Tn对所有nN*都成立,只需,即m15,则最大的正整数m为1423【答案】 【解析】解:(1)向量=(,1),=(cos,),记f(x)=f(x)=cos+=sin+cos+=sin(+)+,最小正周期T=4,2k+2k+,则4kx4k+,kZ故函数f(x)的单调递增区间是4k,4k+,kZ;(2)将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为:y=g(x)=sin(x+)+ =sin()+,则y=g(x)k=sin(x)+k,x0,可得:x,sin(x)1,0sin(x)+,若函数y=g(x)k在0,上有零点,则函数y=g(x)的图象与直线y=k在0,上有交点,实数k的取值范围是0,当k0或k时,函数y=g(x)k在的零点个数是0;当0k1时,函数y=g(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢结构焊接设备管理方案
- 2025年套饰套装行业研究报告及未来行业发展趋势预测
- 湿地生物资源保护与可持续利用
- 公路建设项目资金预算管理方案
- 2025年纺织面料鞋制造行业研究报告及未来行业发展趋势预测
- 2025年榻榻米床垫行业研究报告及未来行业发展趋势预测
- 2025年单据收据行业研究报告及未来行业发展趋势预测
- 2025年墙贴行业研究报告及未来行业发展趋势预测
- 2026届吉林省榆树一中五校化学高一第一学期期中达标测试试题含解析
- 医院感染暴发应急试卷(附答案)
- 2025秋人教部编版三年级上册语文教学计划
- 妇产科护理 课件06章-正常产褥期母婴的护理
- 2025年三类人员安全员C证继续教育题库带参考答案
- 蝴蝶的色彩课件
- 2025年全国企业员工全面质量管理知识竞赛题库及答案
- 2022年江苏泰州泰兴市济川街道招聘劳动保障协理员6人笔试备考试题及答案解析
- 2025年《药品管理法》试题(附答案)
- 基孔肯雅热防控指南专题课件
- 2025年党建知识应知应会测试题库(附答案)
- 2025至2030中国人造土壤市场经营形势与未来发展方向研究报告
- 2025年新人教版小升初分班考试数学试卷
评论
0/150
提交评论