已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北湖区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )(A) ( B ) (C) (D) 2 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,43 已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是( )AbcaBbacCabcDcba4 函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点5 阅读右图所示的程序框图,若,则输出的的值等于( )A28 B36 C45 D1206 某几何体的三视图如图所示,则该几何体为( )A四棱柱 B四棱锥 C三棱台 D三棱柱 7 已知集合(其中为虚数单位),则( )A B C D8 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD9 与圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0都相切的直线有()A1条B2条C3条D4条10函数f(x)=3x+x的零点所在的一个区间是( )A(3,2)B(2,1)C(1,0)D(0,1)11若,则下列不等式一定成立的是( )ABCD12下列判断正确的是( )A不是棱柱B是圆台C是棱锥D是棱台二、填空题13考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于14已知数列an满足an+1=e+an(nN*,e=2.71828)且a3=4e,则a2015=15已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前16项和为16若数列满足,则数列的通项公式为 .17刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下: 甲说:“我们四人都没考好” 乙说:“我们四人中有人考的好” 丙说:“乙和丁至少有一人没考好” 丁说:“我没考好”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了 18设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为,则此双曲线的标准方程是 .三、解答题19已知数列an满足a1=,an+1=an+,数列bn满足bn=()证明:bn(0,1)()证明: =()证明:对任意正整数n有an 20(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,曲线的参数方程是是参数)()写出曲线的直角坐标方程和曲线的普通方程;()求的取值范围,使得,没有公共点21电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性(1)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率附:K2=P(K2k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.845.0246.6357.87910.8322已知椭圆C: +=1(ab0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切()求椭圆C的方程;()如图,若斜率为k(k0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线l过定点,并求出斜率k的取值范围23在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(2)设点是曲线上的一个动点,求它到直线的距离的最小值。24已知向量=(,1),=(cos,),记f(x)=(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)k在的零点个数北湖区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】 根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于2 【答案】C【解析】考点:茎叶图,频率分布直方图3 【答案】A【解析】解:a=0.50.5,c=0.50.2,0ac1,b=20.51,bca,故选:A4 【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值5 【答案】C 【解析】解析:本题考查程序框图中的循环结构,当时,选C6 【答案】【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.7 【答案】D【解析】考点:1.复数的相关概念;2.集合的运算8 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键9 【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数【解答】解:圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0的方程可化为,;圆C1,C2的圆心分别为(3,2),(7,1);半径为r1=1,r2=6两圆的圆心距=r2r1;两个圆外切,它们只有1条内公切线,2条外公切线故选C10【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(1)=10,f(0)=30+0=10,f(1)f(0)0,可知:函数f(x)的零点所在的区间是(1,0)故选:C【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题11【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D 12【答案】C【解析】解:是底面为梯形的棱柱;的两个底面不平行,不是圆台;是四棱锥;不是由棱锥截来的,故选:C二、填空题13【答案】 【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,4个点构成平行四边形的概率P=故答案为:【点评】本题考查古典概型及其概率计算公式的应用,是基础题确定基本事件的个数是关键14【答案】2016 【解析】解:由an+1=e+an,得an+1an=e,数列an是以e为公差的等差数列,则a1=a32e=4e2e=2e,a2015=a1+2014e=2e+2014e=2016e故答案为:2016e【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题15【答案】546 【解析】解:当n=2k1(kN*)时,a2k+1=a2k1+1,数列a2k1为等差数列,a2k1=a1+k1=k;当n=2k(kN*)时,a2k+2=2a2k,数列a2k为等比数列,该数列的前16项和S16=(a1+a3+a15)+(a2+a4+a16)=(1+2+8)+(2+22+28)=+=36+292=546故答案为:546【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题16【答案】 【解析】【解析】;故17【答案】乙 ,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。故答案为:乙,丙。18【答案】【解析】试题分析:由题意可知椭圆的焦点在轴上,且,故焦点坐标为由双曲线的定义可得,故,故所求双曲线的标准方程为故答案为:考点:双曲线的简单性质;椭圆的简单性质三、解答题19【答案】 【解析】证明:()由bn=,且an+1=an+,得,下面用数学归纳法证明:0bn1由a1=(0,1),知0b11,假设0bk1,则,0bk1,则0bk+11综上,当nN*时,bn(0,1);()由,可得,=故;()由()得:,故由知,当n2时,=【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题20【答案】【解析】 【解析】()曲线的直角坐标方程是,曲线的普通方程是5分()对于曲线 ,令,则有故当且仅当时,没有公共点,解得10分21【答案】 【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)10100=25名可得22列联表:非体育迷体育迷合计男301545女451055总计7525100将22列联表中的数据代入公式计算可得K2的观测值为:k=3.0303.0303.841,我们没有理由认为“体育迷”与性别有关(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间=(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),其中ai(i=1,2,3)表示男性,bj(j=1,2)表示女性设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)P(A)=【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题22【答案】 【解析】()解:椭圆的左,右焦点分别为F1(c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b=c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;()证明:设Q(x1,y1),R(x2,y2),F1(1,0),由RF1F2=PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t22=0,判别式=16k2t24(1+2k2)(2t22)0,即为t22k21x1+x2=,x1x2=,y1=kx1+t,y2=kx2+t,代入可得,(k+t)(x1+x2)+2t+2kx1x2=0,将代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2)即有直线l恒过定点(2,0)将t=2k代入,可得2k21,解得k0或0k则直线l的斜率k的取值范围是(,0)(0,)【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题23【答案】(1)点P在直线上(2)【解析】(1)把极坐标系下的点化为直角坐标,得P(0,4)。因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,(2)因为点Q在曲线C上,故可设点Q的坐标为,从而点Q到直线的距离为,24【答案】 【解析】解:(1)向量=(,1),=(cos,),记f(x)=f(x)=cos+=sin+cos+=sin(+)+,最小正周期T=4,2k+2k+,则4kx4k+,kZ故函数f(x)的单调递增区间是4k,4k+,kZ;(2)将函数y=f(x)=sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年低空经济产业集群创新能力评价研究报告
- 2026-2031中国柜体行业发展趋势及竞争策略研究报告
- 2026-2031中国光伏逆变器行业市场研究及投资战略预测报告
- 2026-2031中国供应链金融市场发展规划及投资战略可行性预测报告
- 2025年P气瓶充装证模拟考试题库及答案
- 2025年安全员A证考试题库及答案
- 2025年团队合作与管理知识考察试题及答案解析
- 2026年建筑医院古机械合同
- 高新技术企业融资风险控制
- 2026年工业AI视觉质检模型定制开发合同
- 去冰岛旅游景点
- 大学生玩网络游戏的情况及其影响调查报告
- 2025【英文合同】英文版国际租房合同模板
- 南京农业大学2017博士研究生入学考试英语试题
- 土地证补办申请书
- 曹冠玉艺术歌曲的创作特征及演唱探析
- 《金属冶炼安全培训》课件
- 教育强国建设的时代意蕴与实践路径研究
- 《言语语言障碍概论》课件
- 医院病人信息管理制度
- 《高尔基体溶酶体》课件
评论
0/150
提交评论