




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷吉木萨尔县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数f(x)=x2x2,x5,5,在定义域内任取一点x0,使f(x0)0的概率是( )ABCD2 “方程+=1表示椭圆”是“3m5”的( )条件A必要不充分B充要C充分不必要D不充分不必要3 若全集U=1,0,1,2,P=xZ|x22,则UP=( )A2B0,2C1,2D1,0,24 若关于x的方程x3x2x+a=0(aR)有三个实根x1,x2,x3,且满足x1x2x3,则a的取值范围为( )AaBa1Ca1Da15 下列判断正确的是( )A不是棱柱B是圆台C是棱锥D是棱台6 P是双曲线=1(a0,b0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则PF1F2的内切圆圆心的横坐标为( )AaBbCcDa+bc7 设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若, ,则 C若,则 D若,则8 已知ABC中,a=1,b=,B=45,则角A等于( )A150B90C60D309 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )Ai7?Bi15?Ci15?Di31?10设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D1011下列满足“xR,f(x)+f(x)=0且f(x)0”的函数是( )Af(x)=xe|x|Bf(x)=x+sinxCf(x)=Df(x)=x2|x|12集合,是的一个子集,当时,若有,则称为的一个“孤立元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个A.4 B. 5 C.6 D.7二、填空题13如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成14满足关系式2,3A1,2,3,4的集合A的个数是15在正方形中,,分别是边上的动点,当时,则的取值范围为 【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力16设,则的最小值为 。17袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为18f(x)=x(xc)2在x=2处有极大值,则常数c的值为 14已知集合,若3M,5M,则实数a的取值范围是三、解答题19已知函数(1)令,讨论的单调区间;(2)若,正实数满足,证明20已知抛物线C:y2=2px(p0)过点A(1,2)()求抛物线C的方程,并求其准线方程;()是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由21对于任意的nN*,记集合En=1,2,3,n,Pn=若集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质如当n=2时,E2=1,2,P2=x1,x2P2,且x1x2,不存在kN*,使x1+x2=k2,所以P2具有性质()写出集合P3,P5中的元素个数,并判断P3是否具有性质()证明:不存在A,B具有性质,且AB=,使E15=AB()若存在A,B具有性质,且AB=,使Pn=AB,求n的最大值 22提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 23已知正项等差an,lga1,lga2,lga4成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d24已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间,上的最大值和最小值吉木萨尔县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:f(x)0x2x201x2,f(x0)01x02,即x01,2,在定义域内任取一点x0,x05,5,使f(x0)0的概率P=故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键2 【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即3m5且m1,此时3m5成立,即充分性成立,当m=1时,满足3m5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件即必要性不成立故“方程+=1表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题3 【答案】A【解析】解:x22xP=xZ|x22=x|x,xZ|=1,0,1,又全集U=1,0,1,2,UP=2故选:A4 【答案】B【解析】解:由x3x2x+a=0得a=x3x2x,设f(x)=x3x2x,则函数的导数f(x)=3x22x1,由f(x)0得x1或x,此时函数单调递增,由f(x)0得x1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=111=1,在x=时,函数取得极大值f()=()3()2()=,要使方程x3x2x+a=0(aR)有三个实根x1,x2,x3,则1a,即a1,故选:B【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键5 【答案】C【解析】解:是底面为梯形的棱柱;的两个底面不平行,不是圆台;是四棱锥;不是由棱锥截来的,故选:C6 【答案】A【解析】解:如图设切点分别为M,N,Q,则PF1F2的内切圆的圆心的横坐标与Q横坐标相同由双曲线的定义,PF1PF2=2a由圆的切线性质PF1PF2=FIMF2N=F1QF2Q=2a,F1Q+F2Q=F1F2=2c,F2Q=ca,OQ=a,Q横坐标为a故选A【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义7 【答案】111【解析】考点:线线,线面,面面的位置关系8 【答案】D【解析】解:,B=45根据正弦定理可知 sinA=A=30故选D【点评】本题主要考查正弦定理的应用属基础题9 【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i15?故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查10【答案】B【解析】本题考查了对数的计算、列举思想a时,不符;a0时,ylog2x过点(,1),(1,0),此时b0,b1符合;a时,ylog2(x)过点(0,1),(,0),此时b0,b1符合;a1时,ylog2(x1)过点(,1),(0,0),(1,1),此时b1,b1符合;共6个11【答案】A【解析】解:满足“xR,f(x)+f(x)=0,且f(x)0”的函数为奇函数,且在R上为减函数,A中函数f(x)=xe|x|,满足f(x)=f(x),即函数为奇函数,且f(x)=0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(x)=f(x),即函数为奇函数,但f(x)=1+cosx0,在R上是增函数,C中函数f(x)=,满足f(x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(x)=f(x),故函数为偶函数,故选:A12【答案】C【解析】试题分析:根据题中“孤立元素”定义可知,若集合B中不含孤立元素,则必须没有三个连续的自然数存在,所有B的可能情况为:,共6个。故选C。考点:1.集合间关系;2.新定义问题。 二、填空题13【答案】4 【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成故答案为:414【答案】4 【解析】解:由题意知,满足关系式2,3A1,2,3,4的集合A有:2,3,2,3,1,2,3,4,2,3,1,4,故共有4个,故答案为:415【答案】(,)上的点到定点的距离,其最小值为,最大值为,故的取值范围为16【答案】9【解析】由柯西不等式可知17【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键18【答案】6 【解析】解:f(x)=x32cx2+c2x,f(x)=3x24cx+c2,f(2)=0c=2或c=6若c=2,f(x)=3x28x+4,令f(x)0x或x2,f(x)0x2,故函数在(,)及(2,+)上单调递增,在(,2)上单调递减,x=2是极小值点故c=2不合题意,c=6故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式三、解答题19【答案】(1)当时,函数单调递增区间为,无递减区间,当时,函数单调递增区间为,单调递减区间为;(2)证明见解析.【解析】试题解析:(2)当时,由可得,即,令,则,则在区间上单调递减,在区间上单调递增,所以,所以,又,故,由可知1考点:函数导数与不等式【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.20【答案】 【解析】解:(I)将(1,2)代入抛物线方程y2=2px,得4=2p,p=2抛物线C的方程为:y2=4x,其准线方程为x=1(II)假设存在符合题意的直线l,其方程为y=2x+t,由得y2+2y2t=0,直线l与抛物线有公共点,=4+8t0,解得t又直线OA与L的距离d=,求得t=1tt=1符合题意的直线l存在,方程为2x+y1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想21【答案】【解析】解:()对于任意的nN*,记集合En=1,2,3,n,Pn=集合P3,P5中的元素个数分别为9,23,集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质,P3不具有性质.证明:()假设存在A,B具有性质,且AB=,使E15=AB其中E15=1,2,3,15因为1E15,所以1AB,不妨设1A因为1+3=22,所以3A,3B同理6A,10B,15A因为1+15=42,这与A具有性质矛盾所以假设不成立,即不存在A,B具有性质,且AB=,使E15=AB.解:()因为当n15时,E15Pn,由()知,不存在A,B具有性质,且AB=,使Pn=AB若n=14,当b=1时,取A1=1,2,4,6,9,11,13,B1=3,5,7,8,10,12,14,则A1,B1具有性质,且A1B1=,使E14=A1B1当b=4时,集合中除整数外,其余的数组成集合为,令,则A2,B2具有性质,且A2B2=,使当b=9时,集中除整数外,其余的数组成集合,令,则A3,B3具有性质,且A3B3=,使集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1A2A3C,B=B1B2B3,则AB=,且P14=AB综上,所求n的最大值为14.【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用22【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023上半年安泰低值医用耗材企业社会责任报告:NGO评估与行业倡导
- 基层医疗卫生机构信息化建设中的信息化与医疗信息化服务创新报告2025
- 国际许可合同(标准版)
- 供应啤酒合同(标准版)
- 开学第一课教学设计与实施方案
- (2025年标准)工程外协协议书
- (2025年标准)工程工作协议书
- (2025年标准)各种建房协议书
- (2025年标准)个人资产回购协议书
- (2025年标准)个人销货提成协议书
- 2025-2026学年第一学期安全主题教育
- 2025年发展对象考试题库附含答案
- 2025年兵团基层两委正职定向考录公务员试题(附答案)
- 公司解散清算的法律意见书、债权处理法律意见书
- 2022年高校教师资格证(高校教师职业道德)考试题库高分300题带解析答案(安徽省专用)
- 《退役军人保障法》知识考试题库(含各题型)
- 口腔科超声波洁牙知情同意书
- C型钢检验报告
- 甲状腺腺瘤教学查房课件
- 人教版高中美术《书法》选修第一课“汉字与书法文化”教案
- 热轧卷板10年7月份erp系统价格维护审批表
评论
0/150
提交评论