蒲江县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
蒲江县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
蒲江县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
蒲江县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
蒲江县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

蒲江县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45和30,而且两条船与炮台底部连线成30角,则两条船相距( )A10米B100米C30米D20米2 若关于的不等式的解集为,则参数的取值范围为( )A B C D【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.3 若函数f(x)是奇函数,且在(0,+)上是增函数,又f(3)=0,则(x2)f(x)0的解集是( )A(3,0)(2,3)B(,3)(0,3)C(,3)(3,+)D(3,0)(2,+)4 利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为( )P(K2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A25%B75%C2.5%D97.5%5 抛物线y2=2x的焦点到直线xy=0的距离是( )ABCD6 已知平面向量与的夹角为,且,则( )A B C D 7 下列函数在其定义域内既是奇函数又是增函数的是()A B C D8 设xR,则“|x2|1”是“x2+x20”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件9 不等式0的解集是( )A(,1)(1,2)B1,2C(,1)2,+)D(1,210下列关系正确的是( )A10,1B10,1C10,1D10,111为得到函数的图象,只需将函数y=sin2x的图象( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位12某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D二、填空题13在中,已知角的对边分别为,且,则角为 .14一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件im中的整数m的值是15已知正整数的3次幂有如下分解规律:;若的分解中最小的数为,则的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.16已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 17在ABC中,则_18设全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,若NM,则实数a的取值范围是三、解答题19【泰州中学2018届高三10月月考】已知函数.(1)若曲线与直线相切,求实数的值;(2)记,求在上的最大值;(3)当时,试比较与的大小.20已知椭圆的离心率,且点在椭圆上()求椭圆的方程;()直线与椭圆交于、两点,且线段的垂直平分线经过点求(为坐标原点)面积的最大值21在平面直角坐标系xOy中,点B与点A(1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于()求动点P的轨迹方程;()设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由22(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的取值范围23在ABC中,D为BC边上的动点,且AD=3,B=(1)若cosADC=,求AB的值;(2)令BAD=,用表示ABD的周长f(),并求当取何值时,周长f()取到最大值?24(本小题满分12分)求下列函数的定义域:(1);(2).蒲江县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45,设A处观测小船D的俯角为30,连接BC、BDRtABC中,ACB=45,可得BC=AB=30米RtABD中,ADB=30,可得BD=AB=30米在BCD中,BC=30米,BD=30米,CBD=30,由余弦定理可得:CD2=BC2+BD22BCBDcos30=900CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离着重考查了余弦定理、空间线面的位置关系等知识,属于中档题熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键2 【答案】A 3 【答案】A【解析】解:f(x)是R上的奇函数,且在(0,+)内是增函数,在(,0)内f(x)也是增函数,又f(3)=0,f(3)=0当x(,3)(0,3)时,f(x)0;当x(3,0)(3,+)时,f(x)0;(x2)f(x)0的解集是(3,0)(2,3)故选:A4 【答案】D【解析】解:k5、024,而在观测值表中对应于5.024的是0.025,有10.025=97.5%的把握认为“X和Y有关系”,故选D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目5 【答案】C【解析】解:抛物线y2=2x的焦点F(,0),由点到直线的距离公式可知:F到直线xy=0的距离d=,故答案选:C6 【答案】C考点:平面向量数量积的运算7 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B8 【答案】A【解析】解:由“|x2|1”得1x3,由x2+x20得x1或x2,即“|x2|1”是“x2+x20”的充分不必要条件,故选:A9 【答案】D【解析】解:依题意,不等式化为,解得1x2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解10【答案】B【解析】解:由于10,1,10,1,故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键11【答案】A【解析】解:,只需将函数y=sin2x的图象向左平移个单位得到函数的图象故选A【点评】本题主要考查诱导公式和三角函数的平移属基础题12【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.二、填空题13【答案】【解析】考点:正弦定理【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是,消去多余的变量,从而解出角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在年全国卷( )中以选择题的压轴题出现.14【答案】6 【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;判断框中的条件为i6?故答案为:6【点评】本题考查程序框图,尤其考查循环结构对循环体每次循环需要进行分析并找出内在规律本题属于基础题15【答案】10【解析】的分解规律恰好为数列1,3,5,7,9,中若干连续项之和,为连续两项和,为接下来三项和,故的首个数为.的分解中最小的数为91,解得.16【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键17【答案】2【解析】【知识点】余弦定理同角三角函数的基本关系式【试题解析】因为所以又因为解得:再由余弦定理得:故答案为:218【答案】,1 【解析】解:全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,NM,2a11 且4a2,解得 2a,故实数a的取值范围是,1,故答案为,1三、解答题19【答案】(1);(2)当时,;当时,;(3).【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值试题解析:(1)设曲线与相切于点,由,知,解得,又可求得点为,所以代入,得.(2)因为,所以.当,即时,此时在上单调递增,所以;当即,当时,单调递减,当时,单调递增,.(i)当,即时,;(ii)当,即时,;当,即时,此时在上单调递减,所以.综上,当时,;当时,.(3)当时,当时,显然;当时,记函数,则,可知在上单调递增,又由知,在上有唯一实根,且,则,即(*),当时,单调递减;当时,单调递增,所以,结合(*)式,知,所以,则,即,所以.综上,.试题点睛:本题综合考查了利用导数研究函数的单调性、最值基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小20【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】()由已知,点在椭圆上,解得所求椭圆方程为()设,的垂直平分线过点,的斜率存在当直线的斜率时,当且仅当时,当直线的斜率时, 设消去得:由 ,的中点为由直线的垂直关系有,化简得 由得又到直线的距离为,时,由,解得;即时,;综上:;21【答案】 【解析】解:()因为点B与A(1,1)关于原点O对称,所以点B得坐标为(1,1)设点P的坐标为(x,y)化简得x2+3y2=4(x1)故动点P轨迹方程为x2+3y2=4(x1)()解:若存在点P使得PAB与PMN的面积相等,设点P的坐标为(x0,y0)则因为sinAPB=sinMPN,所以所以=即(3x0)2=|x021|,解得因为x02+3y02=4,所以故存在点P使得PAB与PMN的面积相等,此时点P的坐标为【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题22【答案】【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用23【答案】 【解析】(本小题满分12分)解:(1),2分(注:先算sinADC给1分),3分,5分(2)BAD=,6由正弦定理有,7分,8分,10分=,11分当,即时f()取到最大值912分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论