




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
哈密市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知x1,则函数的最小值为( )A4B3C2D12 设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体SABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体SABC的体积为V,则r=( )ABCD3 在正方体中,是线段的中点,若四面体的外接球体积为,则正方体棱长为( )A2 B3 C4 D5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力4 是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-25 双曲线的渐近线方程是( )ABCD6 某三棱锥的三视图如图所示,该三棱锥的体积是( )A 2 B4 C D【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.7 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D88 如图,在ABC中,AB=6,AC=4,A=45,O为ABC的外心,则等于( )A2B1C1D29 以的焦点为顶点,顶点为焦点的椭圆方程为( )ABCD 10已知函数f(x)=x3+mx2+(2m+3)x(mR)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是( )A0,2B0,3C0,)D0,)11已知函数,关于的方程()有3个相异的实数根,则的取值范围是( )A B C D【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力12三个数60.5,0.56,log0.56的大小顺序为( )Alog0.560.5660.5Blog0.5660.50.56C0.5660.5log0.56D0.56log0.5660.5 二、填空题13在数列中,则实数a=,b=14已知,若,则= 15在ABC中,若a=9,b=10,c=12,则ABC的形状是 16甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 17过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是18某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .三、解答题19已知一个几何体的三视图如图所示()求此几何体的表面积;()在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长20(本小题满分10分)选修45:不等式选讲已知函数(I)若,使得不等式成立,求实数的最小值;()在(I)的条件下,若正数满足,证明:.21我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:100500元6001000总计2039106164059151934总计252550(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率22已知函数()(1)求的单调区间和极值;(2)求在上的最小值(3)设,若对及有恒成立,求实数的取值范围23已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 24已知函数f(x)=|2x+1|+|2x3|()求不等式f(x)6的解集;()若关于x的不等式f(x)log2(a23a)2恒成立,求实数a的取值范围 哈密市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:x1x10由基本不等式可得, 当且仅当即x1=1时,x=2时取等号“=”故选B2 【答案】 C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和则四面体的体积为 R=故选C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)3 【答案】C4 【答案】B【解析】考点:向量共线定理5 【答案】B【解析】解:双曲线标准方程为,其渐近线方程是=0,整理得y=x故选:B【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程属于基础题6 【答案】B 7 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力8 【答案】A【解析】解:结合向量数量积的几何意义及点O在线段AB,AC上的射影为相应线段的中点,可得,则=1618=2;故选A【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题9 【答案】D【解析】解:双曲线的顶点为(0,2)和(0,2),焦点为(0,4)和(0,4)椭圆的焦点坐标是为(0,2)和(0,2),顶点为(0,4)和(0,4)椭圆方程为故选D【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质10【答案】C【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f(x)=x2+2mx+2m+3,由题意可得,判别式0,即有4m24(2m+3)0,解得m3或m1,又x1+x2=2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k=x1+x2=2m,则有直线AB:yx12=2m(xx1),即为2mx+y2mx1x12=0,圆(x+1)2+y2=的圆心为(1,0),半径r为则g(m)=dr=,由于f(x1)=x12+2mx1+2m+3=0,则g(m)=,又m3或m1,即有m21则g(m)=,则有0g(m)故选C【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题11【答案】D第卷(共90分)12【答案】A【解析】解:60.560=1,00.560.50=1,log0.56log0.51=0log0.560.5660.5故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题二、填空题13【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用14【答案】【解析】试题分析:因为,所以,又,因此,因为,所以,考点:指对数式运算15【答案】锐角三角形【解析】解:c=12是最大边,角C是最大角根据余弦定理,得cosC=0C(0,),角C是锐角,由此可得A、B也是锐角,所以ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题16【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好17【答案】 【解析】解:抛物线C方程为y2=4x,可得它的焦点为F(1,0),设直线l方程为y=k(x1),由,消去x得设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=4|AF|=3|BF|,y1+3y2=0,可得y1=3y2,代入得2y2=,且3y22=4,消去y2得k2=3,解之得k=故答案为:【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题18【答案】【解析】考点:分层抽样方法三、解答题19【答案】 【解析】解:()由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和S圆锥侧=222=4;S圆柱侧=224=16;S圆柱底=22=4几何体的表面积S=20+4;()沿A点与B点所在母线剪开圆柱侧面,如图:则AB=2,以从A点到B点在侧面上的最短路径的长为220【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力 21【答案】 【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键22【答案】(1)的单调递增区间为,单调递减区间为,无极大值;(2)时,时,时,;(3).【解析】(2)当,即时,在上递增,;当,即时,在上递减,;当,即时,在上递减,在上递增,(3),由,得,当时,;当时,在上递减,在递增,故,又,当时,对恒成立等价于;又对恒成立,故1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用.【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.23【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在(,1)上单调递减,在1,0单调递增,在0,+)上单调递减,f(x)在x=1处取得极小值f(1)=,在x=0处取得极大值f(0)=1,由,得g(x)=2x2+2x当x1或x0时,g(x)0;当1x0时,g(x)0g(x)在(,1上单调递增,在1,0单调递减,在0,+)上单调递增故g(x)在x=1处取得极大值,在x=0处取得极小值g(0)=m,数f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邮件签订合同
- Unit 4 How can we become good learners说课稿-2025-2026学年初中英语鲁教版五四学制2012八年级下册-鲁教版五四学制2012
- 三、编辑素材教学设计初中信息技术(信息科技)八年级下册沪科版
- 2025建筑地基与基础工程的承包合同
- 2023三年级英语上册 Unit 1 Hello说课稿1 湘少版
- 第23课 分解描述问题教学设计小学信息科技人教版2024三年级全一册-人教版2024
- 2025二手车辆委托买卖合同
- 活动3 图片的简单处理说课稿-2025-2026学年小学信息技术(信息科技)六年级上册西师大版
- 做中学 尝试3D打印教学设计小学劳动五年级上册长江版《劳动教育》
- 2025标准版自然人借款合同样式
- 国家管网施工安全培训课件
- 旅游景点游船项目可行性研究报告
- 国开2025年秋季《形势与政策》大作业答案
- 对映异构简介教学设计-2025-2026学年中职专业课-药用化学基础-药剂-医药卫生大类
- 2024十问“AI陪伴”研究报告:现状、趋势与机会
- 2025年巨量引擎医药健康行业营销白皮书
- 2025年福建省公开遴选公务员笔试试题及答案解析(综合类)
- 简易版关于做好县委巡察组巡视商务局期间信访稳定工作的应急预案
- 司法行政业务授课课件
- 医院反恐防恐知识培训课件
- (2025年)贵州省遵义市【辅警协警】笔试预测试题含答案
评论
0/150
提交评论