大田县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
大田县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
大田县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
大田县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
大田县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大田县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如果过点M(2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是( )ABCD2 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是( )A8cm2B cm2C12 cm2D cm23 函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称4 已知抛物线的焦点为,点是抛物线上的动点,则当的值最小时,的面积为( )A. B.C. D. 【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.5 已知直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8平行,则实数m的值为( )A7B1C1或7D6 已知向量=(1,2),=(m,1),如果向量与平行,则m的值为( )ABC2D27 在ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2c2=3bc,则A等于( )A30B60C120D1508 已知函数f(x)=ax1+logax在区间1,2上的最大值和最小值之和为a,则实数a为( )ABC2D49 函数是( )A最小正周期为2的奇函数B最小正周期为的奇函数C最小正周期为2的偶函数D最小正周期为的偶函数10若函数在上是单调函数,则的取值范围是( ) A B C D11用反证法证明命题:“已知a、bN*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为( )Aa、b都能被5整除Ba、b都不能被5整除Ca、b不都能被5整除Da不能被5整除12已知等差数列an的前n项和为Sn,若m1,且am1+am+1am2=0,S2m1=38,则m等于( )A38B20C10D9二、填空题13已知|=1,|=2,与的夹角为,那么|+|=14,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为_.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力15已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 16在直角坐标系xOy中,已知点A(0,1)和点B(3,4),若点C在AOB的平分线上且|=2,则=17某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为18若实数x,y满足x2+y22x+4y=0,则x2y的最大值为三、解答题19(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明:平面;(2)设,三棱锥的体积,求到平面的距离.11120(本小题12分)在多面体中,四边形与是边长均为正方形,平面,平面,且(1)求证:平面平面;(2)若,求三棱锥的体积 【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想21(本小题满分12分)已知等差数列满足:(),该数列的前三项分别加上1,1,3后成等比数列,且.(1)求数列,的通项公式;(2)求数列的前项和.22在四棱锥EABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC底面ABCD,F为BE的中点()求证:DE平面ACF;()求证:BDAE23ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2c2)=3ab()求cos2C和角B的值;()若ac=1,求ABC的面积24已知函数f(x)=ax3+bx23x在x=1处取得极值求函数f(x)的解析式大田县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:设过点M(2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k22=0,过点M(2,0)的直线l与椭圆有公共点,=64k44(2k2+1)(8k22)0,整理,得k2,解得k直线l的斜率k的取值范围是,故选:D【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用2 【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=22+422=12cm2,故选:C【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键3 【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C4 【答案】B 【解析】设,则.又设,则,所以,当且仅当,即时,等号成立,此时点,的面积为,故选B.5 【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8,l1与l2平行所以,解得m=7故选:A【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力6 【答案】B【解析】解:向量,向量与平行,可得2m=1解得m=故选:B7 【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2c2=3bc,可得a2=7c2,所以cosA=,0A180,A=120故选:C【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查8 【答案】A【解析】解:分两类讨论,过程如下:当a1时,函数y=ax1 和y=logax在1,2上都是增函数,f(x)=ax1+logax在1,2上递增,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,舍去;当0a1时,函数y=ax1 和y=logax在1,2上都是减函数,f(x)=ax1+logax在1,2上递减,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,符合题意;故选A9 【答案】B【解析】解:因为=cos(2x+)=sin2x所以函数的周期为: =因为f(x)=sin(2x)=sin2x=f(x),所以函数是奇函数故选B【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力10【答案】A【解析】试题分析:根据可知,函数图象为开口向上的抛物线,对称轴为,所以若函数在区间上为单调函数,则应满足:或,所以或。故选A。考点:二次函数的图象及性质(单调性)。11【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故选:B12【答案】C【解析】解:根据等差数列的性质可得:am1+am+1=2am,则am1+am+1am2=am(2am)=0,解得:am=0或am=2,若am等于0,显然S2m1=(2m1)am=38不成立,故有am=2,S2m1=(2m1)am=4m2=38,解得m=10故选C二、填空题13【答案】 【解析】解:|=1,|=2,与的夹角为,=1=1|+|=故答案为:【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题14【答案】【解析】15【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题16【答案】(,) 【解析】解:,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:又|=2=(,)故答案为:(,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2)及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解17【答案】12 【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有(10x)人,由此可得(15x)+(10x)+x+8=30,解得x=3,所以15x=12,即所求人数为12人,故答案为:1218【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x2y,再利用z的几何意义求最值,只需求出直线z=x2y过图形上的点A的坐标,即可求解【解答】解:方程x2+y22x+4y=0可化为(x1)2+(y+2)2=5,即圆心为(1,2),半径为的圆,(如图)设z=x2y,将z看做斜率为的直线z=x2y在y轴上的截距,经平移直线知:当直线z=x2y经过点A(2,4)时,z最大,最大值为:10故答案为:10三、解答题19【答案】(1)证明见解析;(2).【解析】试题解析:(1)设和交于点,连接,因为为矩形,所以为的中点,又为的中点,所以,且平面,平面,所以平面.(2),由,可得,作交于.由题设知平面,所以,故平面,又,所以到平面的距离为.1考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.20【答案】【解析】(1)连接,由题意,知,平面又平面,又,2分由题意,得,则,4分又,平面5分平面,平面平面6分21【答案】(1),;(2).【解析】试题分析:(1)设为等差数列的公差,且,利用数列的前三项分别加上后成等比数列,求出,然后求解;(2)写出利用错位相减法求和即可试题解析:解:(1)设为等差数列的公差,由,分别加上后成等比数列,111.Com所以 ,又 ,即 (6分)考点:数列的求和22【答案】【解析】【分析】()连接FO,则OF为BDE的中位线,从而DEOF,由此能证明DE平面ACF()推导出BDAC,ECBD,从而BD平面ACE,由此能证明BDAE【解答】证明:()连接FO,底面ABCD是正方形,且O为对角线AC和BD交点,O为BD的中点,又F为BE中点,OF为BDE的中位线,即DEOF,又OF平面ACF,DE平面ACF,DE平面ACF()底面ABCD为正方形,BDAC,EC平面ABCD,ECBD,BD平面ACE,BDAE23【答案】 【解析】解:(I)由cosA=,0A,sinA=,5(a2+b2c2)=3ab,cosC=,0C,sinC=,cos2C=2cos2C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论