叠彩区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
叠彩区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
叠彩区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
叠彩区一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
叠彩区一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

叠彩区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数y=f(x)是y=3x的反函数,则f(3)的值是( )A0B1CD32 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD3 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD4 已知函数,函数,其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )ABCD5 已知函数,函数满足以下三点条件:定义域为;对任意,有;当时,.则函数在区间上零点的个数为( )A7 B6 C5 D4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.6 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大7 在曲线y=x2上切线倾斜角为的点是( )A(0,0)B(2,4)C(,)D(,)8 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A. B.C. D.9 函数有两个不同的零点,则实数的取值范围是( )A B C D10命题“xR,使得x21”的否定是( )AxR,都有x21 BxR,使得x21CxR,使得x21DxR,都有x1或x111直角梯形中,直线截该梯形所得位于左边图形面积为,则函数的图像大致为( ) 12已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力二、填空题13【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为_14若直线ykx1=0(kR)与椭圆恒有公共点,则m的取值范围是15自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则的最小值为( )AB3C4D【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想16设为锐角, =(cos,sin),=(1,1)且=,则sin(+)= 17当时,函数的图象不在函数的下方,则实数的取值范围是_【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力18某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为升三、解答题19如图所示,已知在四边形ABCD中,ADCD,AD=5,AB=7,BD=8,BCD=135(1)求BDA的大小(2)求BC的长20如图,已知椭圆C: +y2=1,点B坐标为(0,1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上()求直线AB的方程()若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OMON为定值21设函数f(x)=lnxax+1()当a=1时,求曲线f(x)在x=1处的切线方程;()当a=时,求函数f(x)的单调区间;()在()的条件下,设函数g(x)=x22bx,若对于x11,2,x20,1,使f(x1)g(x2)成立,求实数b的取值范围22提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 23(本小题满分10分)选修:几何证明选讲 如图所示,已知与相切,为切点,过点的割线交圆于两点,弦,相 交于点,为上一点,且()求证:;()若,求的长24设集合A=x|0xm3,B=x|x0或x3,分别求满足下列条件的实数m的取值范围(1)AB=;(2)AB=B叠彩区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:指数函数的反函数是对数函数,函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1故选:B【点评】本题给出f(x)是函数y=3x(xR)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题2 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题3 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题4 【答案】 D【解析】解:g(x)=f(2x),y=f(x)g(x)=f(x)+f(2x),由f(x)+f(2x)=0,得f(x)+f(2x)=,设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h(x)=恰有4个根,则满足2,解得:b(,4),故选:D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键5 【答案】D第卷(共100分)Com6 【答案】第7 【答案】D【解析】解:y=2x,设切点为(a,a2)y=2a,得切线的斜率为2a,所以2a=tan45=1,a=,在曲线y=x2上切线倾斜角为的点是(,)故选D【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题8 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P.9 【答案】B【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B. (1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程零点个数的常用方法:直接法:可利用判别式的正负直接判定一元二次方程根的个数;转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.本题的解答就利用了方法.10【答案】D【解析】解:命题是特称命题,则命题的否定是xR,都有x1或x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础11【答案】C【解析】试题分析:由题意得,当时,当时,所以,结合不同段上函数的性质,可知选项C符合,故选C.考点:分段函数的解析式与图象.12【答案】D【解析】由已知得,故,故选D二、填空题13【答案】【解析】14【答案】1,5)(5,+) 【解析】解:整理直线方程得y1=kx,直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y1即是y21得到m1椭圆方程中,m5m的范围是1,5)(5,+)故答案为1,5)(5,+)【点评】本题主要考查了直线与圆锥曲线的综合问题本题采用了数形结合的方法,解决问题较为直观15【答案】D【解析】16【答案】:【解析】解:=cossin=,1sin2=,得sin2=,为锐角,cossin=(0,),从而cos2取正值,cos2=,为锐角,sin(+)0,sin(+)=故答案为:17【答案】【解析】由题意,知当时,不等式,即恒成立令,令,在为递减,在为递增,则18【答案】8升 【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量486=8故答案是:8三、解答题19【答案】 【解析】(本题满分为12分)解:(1)在ABC中,AD=5,AB=7,BD=8,由余弦定理得=BDA=60(2)ADCD,BDC=30在ABC中,由正弦定理得, 20【答案】 【解析】()解:设点E(t,t),B(0,1),A(2t,2t+1),点A在椭圆C上,整理得:6t2+4t=0,解得t=或t=0(舍去),E(,),A(,),直线AB的方程为:x+2y+2=0;()证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:xM=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:xN=,OMON=|xM|xN|=2|=|=|=|=【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题21【答案】 【解析】解:函数f(x)的定义域为(0,+),(2分)()当a=1时,f(x)=lnxx1,f(1)=2,f(1)=0,f(x)在x=1处的切线方程为y=2(5分)()=(6分)令f(x)0,可得0x1,或x2;令f(x)0,可得1x2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+).()当时,由()可知函数f(x)在(1,2)上为增函数,函数f(x)在1,2上的最小值为f(1)=(9分)若对于x11,2,x20,1使f(x1)g(x2)成立,等价于g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值(*) (10分)又,x0,1当b0时,g(x)在0,1上为增函数,与(*)矛盾当0b1时,由及0b1得,当b1时,g(x)在0,1上为减函数,此时b1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于x11,2,x20,1使f(x1)g(x2)成立,转化为g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值22【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论