




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷江川区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在极坐标系中,圆的圆心的极坐标系是( )。ABCD2 在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD3 曲线y=x32x+4在点(1,3)处的切线的倾斜角为( )A30B45C60D1204 在等差数列中,已知,则( )A12B24C36D485 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是( )A8cm2B cm2C12 cm2D cm26 已知命题“p:x0,lnxx”,则p为( )Ax0,lnxxBx0,lnxxCx0,lnxxDx0,lnxx7 Sn是等差数列an的前n项和,若3a82a74,则下列结论正确的是( )AS1872 BS1976CS2080 DS21848 圆()与双曲线的渐近线相切,则的值为( )A B C D【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力9 已知集合(其中为虚数单位),则( )A B C D10直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D311某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,412等差数列an中,a1+a5=10,a4=7,则数列an的公差为( )A1B2C3D4二、填空题13设直线系M:xcos+(y2)sin=1(02),对于下列四个命题:AM中所有直线均经过一个定点B存在定点P不在M中的任一条直线上C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上DM中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号)14下列命题:终边在y轴上的角的集合是a|a=,kZ;在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;把函数y=3sin(2x+)的图象向右平移个单位长度得到y=3sin2x的图象;函数y=sin(x)在0,上是减函数其中真命题的序号是15已知偶函数f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=16若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力17已知函数在处取得极小值10,则的值为 18台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75方向上的C点,这时观测站与台风中心的距离AC等于km三、解答题19已知二次函数f(x)=x2+bx+c,其中常数b,cR()若任意的x1,1,f(x)0,f(2+x)0,试求实数c的取值范围;()若对任意的x1,x21,1,有|f(x1)f(x2)|4,试求实数b的取值范围20已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由21已知函数f(x)=x1+(aR,e为自然对数的底数)()若曲线y=f(x)在点(1,f(1)处的切线平行于x轴,求a的值;()求函数f(x)的极值;()当a=1的值时,若直线l:y=kx1与曲线y=f(x)没有公共点,求k的最大值 22(本小题满分12分)已知函数.(1)求函数在上的最大值和最小值;(2)在中,角所对的边分别为,满足,求的值.111123已知圆的极坐标方程为24cos()+6=0(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值 24某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?江川区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。2 【答案】D【解析】解:双曲线(a0,b0)的渐近线方程为y=x联立方程组,解得A(,),B(,),设直线x=与x轴交于点DF为双曲线的右焦点,F(C,0)ABF为钝角三角形,且AF=BF,AFB90,AFD45,即DFDAc,ba,c2a2a2c22a2,e22,e又e1离心率的取值范围是1e故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式3 【答案】B【解析】解:y/=3x22,切线的斜率k=3122=1故倾斜角为45故选B【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题4 【答案】B【解析】,所以,故选B答案:B 5 【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=22+422=12cm2,故选:C【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键6 【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:x0,lnxx”,则p为x0,lnxx故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查7 【答案】【解析】选B.3a82a74,3(a17d)2(a16d)4,即a19d4,S1818a118(a1d)不恒为常数S1919a119(a19d)76,同理S20,S21均不恒为常数,故选B.8 【答案】C9 【答案】D【解析】考点:1.复数的相关概念;2.集合的运算10【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B11【答案】C【解析】考点:茎叶图,频率分布直方图12【答案】B【解析】解:设数列an的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B二、填空题13【答案】BC【解析】【分析】验证发现,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,AM中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,DM中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出【解答】解:因为点(0,2)到直线系M:xcos+(y2)sin=1(02)中每条直线的距离d=1,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,A由于直线系表示圆x2+(y2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,故C正确;D如下图,M中的直线所能围成的正三角形有两类,其一是如ABB型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确故答案为:BC14【答案】 【解析】解:、终边在y轴上的角的集合是a|a=,kZ,故错误;、设f(x)=sinxx,其导函数y=cosx10,f(x)在R上单调递减,且f(0)=0,f(x)=sinxx图象与轴只有一个交点f(x)=sinx与y=x 图象只有一个交点,故错误;、由题意得,y=3sin2(x)+=3sin2x,故正确;、由y=sin(x)=cosx得,在0,上是增函数,故错误故答案为:【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键15【答案】1 【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(1)=f(1)=1故答案为:116【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得17【答案】考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f(x)求方程f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反.18【答案】25 【解析】解:由题意,ABC=135,A=7545=30,BC=25km,由正弦定理可得AC=25km,故答案为:25【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键三、解答题19【答案】 【解析】解:()因为x1,1,则2+x1,3,由已知,有对任意的x1,1,f(x)0恒成立,任意的x1,3,f(x)0恒成立,故f(1)=0,即1为函数函数f(x)的一个零点由韦达定理,可得函数f(x)的另一个零点,又由任意的x1,3,f(x)0恒成立,1,31,c,即c3()函数f(x)=x2+bx+c对任意的x1,x21,1,有|f(x1)f(x2)|4恒成立,即f(x)maxf(x)min4,记f(x)maxf(x)min=M,则M4当|1,即|b|2时,M=|f(1)f(1)|=|2b|4,与M4矛盾;当|1,即|b|2时,M=maxf(1),f(1)f()=f()=(1+)24,解得:|b|2,即2b2,综上,b的取值范围为2b2【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键20【答案】 【解析】解:(1)依题意,可设椭圆C的方程为(a0,b0),且可知左焦点为F(2,0),从而有,解得c=2,a=4,又a2=b2+c2,所以b2=12,故椭圆C的方程为(2)假设存在符合题意的直线l,其方程为y=x+t,由得3x2+3tx+t212=0,因为直线l与椭圆有公共点,所以有=(3t)243(t212)0,解得4t4,另一方面,由直线OA与l的距离4=,从而t=2,由于24,4,所以符合题意的直线l不存在【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想21【答案】 【解析】解:()由f(x)=x1+,得f(x)=1,又曲线y=f(x)在点(1,f(1)处的切线平行于x轴,f(1)=0,即1=0,解得a=e()f(x)=1,当a0时,f(x)0,f(x)为(,+)上的增函数,所以f(x)无极值;当a0时,令f(x)=0,得ex=a,x=lna,x(,lna),f(x)0;x(lna,+),f(x)0;f(x)在(,lna)上单调递减,在(lna,+)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值综上,当a0时,f(x)无极值;当a0时,f(x)在x=lna处取到极小值lna,无极大值()当a=1时,f(x)=x1+,令g(x)=f(x)(kx1)=(1k)x+,则直线l:y=kx1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解假设k1,此时g(0)=10,g()=1+0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k1又k=1时,g(x)=0,知方程g(x)=0在R上没有实数解,所以k的最大值为1 22【答案】(1)最大值为,最小值为;(2).【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简再利用的性质可求在上的最值;(2)利用,可得,再由余弦定理可得,再据正弦定理可得.1试题解析:(2)因为,即,又在中,由余弦定理得,所以.由正弦定理得:,即,所以.考点:1.辅助角公式;2.性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新药研发新方向:2025年靶点发现与验证技术临床转化策略研究
- 5G时代2025年成人教育终身学习体系构建与智能平台运营前景报告
- 城市轨道交通智慧运维系统在2025年的运维人员技能提升报告
- 2025年事业单位工勤技能-河南-河南房管员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-河南-河南仓库管理员一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-河北-河北机械热加工三级(高级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江苏-江苏护理员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-江苏-江苏保安员三级(高级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西汽车修理工(技师/高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西无损探伤工一级(高级技师)历年参考题库典型考点含答案解析
- 2025年职业技能鉴定考试(脱硫值班员·中级/四级)历年参考题库含答案详解(5套)
- 公钥可搜索加密协议:设计原理、安全分析与前沿探索
- 2025年体彩代销者考试题库
- 2025至2030聚乙烯醇缩丁醛(PVB)树脂行业发展趋势分析与未来投资战略咨询研究报告
- 2025年小学语文教师考试题库含答案
- 2025中国医药集团有限公司二级子公司及重点三级子公司高管岗位选聘笔试历年参考题库附带答案详解
- 2025年第十届全国中小学“学宪法、讲宪法”知识竞赛题库
- 结肠息肉的护理查房精编ppt
- 国民头皮护理消费白皮书
- After-Effects影视特效设计教程完整版全套ppt课件
- 关于人民法院刑事审判工作的调研报告
评论
0/150
提交评论