阿克苏市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
阿克苏市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
阿克苏市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
阿克苏市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
阿克苏市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阿克苏市高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数在上单调递增,则实数的取值范围为( )A BC. D2 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD3 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.14 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD5 复数z=在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限6 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A64 B32 C D7 已知集合A=x|x0,且AB=B,则集合B可能是( )Ax|x0Bx|x1C1,0,1DR8 过点(2,2)且与双曲线y2=1有公共渐近线的双曲线方程是( )A=1B=1C=1D=19 函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称10设集合,集合,若 ,则的取值范围( )A B C. D11已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是( )A1BCD12为得到函数的图象,只需将函数y=sin2x的图象( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位二、填空题13【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy中,P是曲线上一点,直线经过点P,且与曲线C在P点处的切线垂直,则实数c的值为_14已知直线l:axby1=0(a0,b0)过点(1,1),则ab的最大值是15直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_。16给出下列命题:(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则pq是假命题(2)命题“若x24x+3=0,则x=3”的逆否命题为真命题(3)“1x3”是“x24x+30”的必要不充分条件(4)若命题p:xR,x2+4x+50,则p:其中叙述正确的是(填上所有正确命题的序号)17已知函数f(x)=sinxcosx,则=18阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是三、解答题19设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 20已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b()求该椭圆的离心率;()已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于APQ,求该椭圆的方程21某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?22某校高一数学兴趣小组开展竞赛前摸底考试甲、乙两人参加了5次考试,成绩如下:第一次第二次第三次第四次第五次甲的成绩8287868090乙的成绩7590917495()若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;()若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率23在极坐标系内,已知曲线C1的方程为22(cos2sin)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数)()求曲线C1的直角坐标方程以及曲线C2的普通方程;()设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值24已知函数(1)求f(x)的周期(2)当时,求f(x)的最大值、最小值及对应的x值阿克苏市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式. 2 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键3 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.4 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题5 【答案】A【解析】解:z=+i,复数z在复平面上对应的点位于第一象限故选A【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具6 【答案】B【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:,故选B. 考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.7 【答案】A【解析】解:由A=x|x0,且AB=B,所以BAA、x|x0=x|x0=A,故本选项正确;B、x|x1,xR=(,10,+),故本选项错误;C、若B=1,0,1,则AB=0,1B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误故选:A【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题8 【答案】A【解析】解:设所求双曲线方程为y2=,把(2,2)代入方程y2=,解得=2由此可求得所求双曲线的方程为故选A【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用9 【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C10【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.11【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=故选:B【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题12【答案】A【解析】解:,只需将函数y=sin2x的图象向左平移个单位得到函数的图象故选A【点评】本题主要考查诱导公式和三角函数的平移属基础题二、填空题13【答案】4ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。14【答案】 【解析】解:直线l:axby1=0(a0,b0)过点(1,1),a+b1=0,即a+b=1,ab=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题15【答案】【解析】设l1与l2的夹角为2,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA=,圆的半径为r=,sin=,cos=,tan=,tan2=,故答案为:。16【答案】(4) 【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题命题q:菱形的对角线相等为假命题;则pq是真命题,故(1)错误,(2)命题“若x24x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x24x+30得1x3,则“1x3”是“x24x+30”的充要条件,故(3)错误,(4)若命题p:xR,x2+4x+50,则p:正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题17【答案】 【解析】解:函数f(x)=sinxcosx=sin(x),则=sin()=,故答案为:【点评】本题主要考查两角差的正弦公式,属于基础题18【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视三、解答题19【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键20【答案】 【解析】解:()设F(c,0),M(c,y1),N(c,y2),则,得y1=,y2=,MN=|y1y2|=b,得a=2b,椭圆的离心率为: =()由条件,直线AP、AQ斜率必然存在,设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kxy+b=0,由于圆x2+y2=4内切于APQ,所以r=2=,得k=(b2),即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,yQ=yP=2,不妨设点Q在y轴左侧,可得xQ=xP=2,则=,解得b=3,则a=6,椭圆方程为:【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质21【答案】 【解析】解:(1)=定义域是(0,7(2),当且仅当即x=6时取=y8012+1800=2760答:当侧面长度x=6时,总造价最低为2760元22【答案】 【解析】解:()解法一:依题意有, 答案一:从稳定性角度选甲合适(注:按()看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适答案二:乙的成绩波动大,有爆发力,选乙合适解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为 所以选乙合适 ()依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A,B,C“水平不相当”考试是第一次,第四次,记为a,b从这5次摸底考试中任意选取2次有ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种情况恰有一次摸底考试两人“水平相当”包括共aA,aB,aC,bA,bB,bC共6种情况5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想23【答案】 【解析】【专题】计算题;直线与圆;坐标系和参数方程【分析】()运用x=cos,y=sin,x2+y2=2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小再由点到直线的距离公式和勾股定理,即可得到最小值【解答】解:()对于曲线C1的方程为22(cos2sin)+4=0,可化为直角坐标方程x2+y22x+4y+4=0,即圆(x1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论