齐河县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
齐河县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
齐河县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
齐河县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
齐河县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

齐河县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在ABC中,则这个三角形一定是( )A等腰三角形B直角三角形C等腰直角三角D等腰或直角三角形2 椭圆的左右顶点分别为,点是上异于的任意一点,且直线斜率的取值范围是,那么直线斜率的取值范围是( )A B C D【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力3 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是( )A10B11C12D13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力4 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内处应填( )A11?B12?C13?D14?5 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、两点,若,且,则抛物线方程为( )A B C D【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力6 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为( )A9.6B7.68C6.144D4.91527 执行右面的程序框图,如果输入的,则输出的属于( ) A. B. C. D.【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用8 已知函数f(x)=31+|x|,则使得f(x)f(2x1)成立的x的取值范围是( )ABC(,)D9 若直线与曲线:没有公共点,则实数的最大值为( )A1BC1D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力10设等比数列an的公比q=2,前n项和为Sn,则=( )A2B4CD11如果集合 ,同时满足,就称有序集对为“ 好集对”. 这里有序集对是指当时,和是不同的集对, 那么“好集对” 一共有( )个 A个 B个 C个 D个12设m,n表示两条不同的直线,、表示两个不同的平面,则下列命题中不正确的是( )Am,m,则Bmn,m,则nCm,n,则mnDm,=n,则mn二、填空题13设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为,则此双曲线的标准方程是 .14已知为常数,若,则_.15若命题“xR,|x2|kx+1”为真,则k的取值范围是16为了近似估计的值,用计算机分别产生90个在1,1的均匀随机数x1,x2,x90和y1,y2,y90,在90组数对(xi,yi)(1i90,iN*)中,经统计有25组数对满足,则以此估计的值为17已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=18已知i是虚数单位,且满足i2=1,aR,复数z=(a2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)三、解答题19(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,点是线段的中点.(1)证明:四点共圆;(2)证明:.20已知函数f(x)=()求函数f(x)单调递增区间;()在ABC中,角A,B,C的对边分别是a,b,c,且满足(2ac)cosB=bcosC,求f(A)的取值范围21某港口的水深y(米)是时间t(0t24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asint+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22函数f(x)=Asin(x+)(A0,0,|)的一段图象如图所示 (1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数 23在ABC中,D为BC边上的动点,且AD=3,B=(1)若cosADC=,求AB的值;(2)令BAD=,用表示ABD的周长f(),并求当取何值时,周长f()取到最大值?24已知函数f(x)=loga(1+x)loga(1x)(a0,a1)()判断f(x)奇偶性,并证明;()当0a1时,解不等式f(x)0齐河县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:,又cosC=,=,整理可得:b2=c2,解得:b=c即三角形一定为等腰三角形故选:A2 【答案】B3 【答案】C【解析】由题意,得甲组中,解得乙组中,所以,所以,故选C4 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误5 【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,解得或,因为,故,故,所以抛物线方程为6 【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(120%)x,结合程序框图易得当n=4时,S=15(120%)4=6.144故选:C7 【答案】B8 【答案】A【解析】解:函数f(x)=31+|x|为偶函数,当x0时,f(x)=31+x此时y=31+x为增函数,y=为减函数,当x0时,f(x)为增函数,则当x0时,f(x)为减函数,f(x)f(2x1),|x|2x1|,x2(2x1)2,解得:x,故选:A【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档9 【答案】C【解析】令,则直线:与曲线:没有公共点,等价于方程在上没有实数解假设,此时,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故又时,知方程在上没有实数解,所以的最大值为,故选C 10【答案】C【解析】解:由于q=2,;故选:C11【答案】B【解析】试题分析:因为,所以当时,;当时,;当时,;当时,;当时,;当时,;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111 12【答案】D【解析】解:A选项中命题是真命题,m,m,可以推出;B选项中命题是真命题,mn,m可得出n;C选项中命题是真命题,m,n,利用线面垂直的性质得到nm;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行故选D【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理二、填空题13【答案】【解析】试题分析:由题意可知椭圆的焦点在轴上,且,故焦点坐标为由双曲线的定义可得,故,故所求双曲线的标准方程为故答案为:考点:双曲线的简单性质;椭圆的简单性质14【答案】【解析】试题分析:由,得,即,比较系数得,解得或,则.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.15【答案】1,) 【解析】解:作出y=|x2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k1,)故答案为:1,)【点评】本题考查全称命题,考查数形结合的数学思想,比较基础16【答案】 【解析】设A(1,1),B(1,1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题17【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题18【答案】充分不必要 【解析】解:复数z=(a2i)(1+i)=a+2+(a2)i,在复平面内对应的点M的坐标是(a+2,a2),若点在第四象限则a+20,a20,2a2,“a=1”是“点M在第四象限”的充分不必要条件,故答案为:充分不必要【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题三、解答题19【答案】(1)证明见解析;(2)证明见解析.【解析】1111试题解析:解:(1)是切线,是弦,即是等腰三角形又点是线段的中点, 是线段垂直平分线,即又由可知是线段的垂直平分线,与互相垂直且平分,四边形是正方形,则四点共圆. (5分)(2由割线定理得,由(1)知是线段的垂直平分线,从而 (10分)考点:与圆有关的比例线段20【答案】 【解析】解:()f(x)=sincos+cos2=sin(+),由2k+2k,kZ可解得:4kx4k,kZ,函数f(x)单调递增区间是:4k,4k,kZ()f(A)=sin(+),由条件及正弦定理得sinBcosC=(2sinAsinC)cosB=2sinAcosBsinCcosB,则sinBcosC+sinCcosB=2sinAcosB,sin(B+C)=2sinAcosB,又sin(B+C)=sinA0,cosB=,又0B,B=可得0A,+,sin(+)1,故函数f(A)的取值范围是(1,)【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题21【答案】 【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,=10,且相隔9小时达到一次最大值说明周期为12,因此,故(0t24)(2)要想船舶安全,必须深度f(t)11.5,即,解得:12k+1t5+12k kZ又0t24当k=0时,1t5;当k=1时,13t17;故船舶安全进港的时间段为(1:005:00),(13:0017:00)【点评】本题主要考查三角函数知识的应用问题解决本题的关键在于求出函数解析式求三角函数的解析式注意由题中条件求出周期,最大最小值等22【答案】 【解析】解:(1)由函数的图象可得A=3, T=4,解得=再根据五点法作图可得+=0,求得=,f(x)=3sin(x)(2)令2kx2k+,kz,求得 5kx5k+,故函数的增区间为5k,5k+,kz函数的最大值为3,此时, x=2k+,即 x=5k+,kz,即f(x)的最大值为3,及取到最大值时x的集合为x|x=5k+,kz(3)设把f(x)=3sin(x)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数即y=3sin(x+)则由(x+m)=x+,求得m=,把函数f(x)=3sin(x)的图象向左平移个单位,可得y=3sin(x+)=3cosx 的图象【点评】本题主要考查由函数y=Asin(x+)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin(x+)的图象变换规律,属于基础题23【答案】 【解析】(本小题满分12分)解:(1),2分(注:先算sinADC给1分),3分,5分(2)BAD=,6由正弦定理有,7分,8分,10分=,11分当,即时f()取到最大值912分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论