




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷梁子湖区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=2 已知为的三个角所对的边,若,则( )A23 B43 C31 D32【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力3 设全集U=1,2,3,4,5,集合A=2,3,4,B=2,5,则B(UA)=( )A5B1,2,5C1,2,3,4,5D4 设a,bR且a+b=3,b0,则当+取得最小值时,实数a的值是( )ABC或D35 设集合A=x|2x4,集合B=x|y=lg(x1),则AB等于( )A(1,2)B1,2C1,2)D(1,26 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D47 已知集合A=x|x0,且AB=B,则集合B可能是( )Ax|x0Bx|x1C1,0,1DR8 已知集合,全集,则( )(A) ( B ) (C) (D) 9 命题“xR,使得x21”的否定是( )AxR,都有x21 BxR,使得x21CxR,使得x21DxR,都有x1或x110已知集合( )A B C D【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力11奇函数f(x)在(,0)上单调递增,若f(1)=0,则不等式f(x)0的解集是( )A(,1)(0,1)B(,1)(1,+)C(1,0)(0,1)D(1,0)(1,+)12设m,n是正整数,多项式(12x)m+(15x)n中含x一次项的系数为16,则含x2项的系数是( )A13B6C79D37二、填空题13已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 14直线ax2y+2=0与直线x+(a3)y+1=0平行,则实数a的值为 15一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60,行驶4小时后,到达C处,看到这个灯塔B在北偏东15,这时船与灯塔相距为海里16已知函数在处取得极小值10,则的值为 17已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是18直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为三、解答题19已知椭圆的离心率,且点在椭圆上()求椭圆的方程;()直线与椭圆交于、两点,且线段的垂直平分线经过点求(为坐标原点)面积的最大值20(本小题满分12分)设f(x)x2axa2ln x(a0)(1)讨论f(x)的单调性;(2)是否存在a0,使f(x)e1,e2对于x1,e时恒成立,若存在求出a的值,若不存在说明理由21(本小题满分10分)选修4-5:不等式选讲已知函数,.(1)解不等式;(2)对任意的实数,不等式恒成立,求实数的最小值.11122如图,点A是单位圆与x轴正半轴的交点,B(,)(I)若AOB=,求cos+sin的值;(II)设点P为单位圆上的一个动点,点Q满足=+若AOP=2,表示|,并求|的最大值 23如图,在底面是矩形的四棱锥PABCD中,PA平面ABCD,PA=AB=2,BC=2,E是PD的中点(1)求证:平面PDC平面PAD;(2)求二面角EACD所成平面角的余弦值24本小题满分12分已知椭圆的离心率为,长轴端点与短轴端点间的距离为2求椭圆的长轴长;过椭圆中心O的直线与椭圆交于A、B两点A、B不是椭圆的顶点,点M在长轴所在直线上,且,直线BM与椭圆交于点D,求证:ADAB。梁子湖区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项2 【答案】C【解析】由已知等式,得,由正弦定理,得,则,所以,故选C3 【答案】B【解析】解:CUA=1,5B(UA)=2,51,5=1,2,5故选B4 【答案】C【解析】解:a+b=3,b0,b=3a0,a3,且a0当0a3时, +=+=f(a),f(a)=+=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值当a0时, +=()=(+)=f(a),f(a)=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值综上可得:当a=或时, +取得最小值故选:C【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题5 【答案】D【解析】解:A=x|2x4=x|x2,由x10得x1B=x|y=lg(x1)=x|x1AB=x|1x2故选D6 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得7 【答案】A【解析】解:由A=x|x0,且AB=B,所以BAA、x|x0=x|x0=A,故本选项正确;B、x|x1,xR=(,10,+),故本选项错误;C、若B=1,0,1,则AB=0,1B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误故选:A【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题8 【答案】C【解析】 ,故选C9 【答案】D【解析】解:命题是特称命题,则命题的否定是xR,都有x1或x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础10【答案】D【解析】,故选D.11【答案】A【解析】解:根据题意,可作出函数图象:不等式f(x)0的解集是(,1)(0,1)故选A12【答案】 D【解析】二项式系数的性质【专题】二项式定理【分析】由含x一次项的系数为16利用二项展开式的通项公式求得2m+5n=16 ,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数【解答】解:由于多项式(12x)m+(15x)n中含x一次项的系数为(2)+(5)=16,可得2m+5n=16 再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(2)2+(5)2=37,故选:D【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题二、填空题13【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键14【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值【解答】解:直线ax2y+2=0与直线x+(a3)y+1=0平行,解得 a=1故答案为 115【答案】24 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=24海里,则这时船与灯塔的距离为24海里故答案为:2416【答案】考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f(x)求方程f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反.17【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题18【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式三、解答题19【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】()由已知,点在椭圆上,解得所求椭圆方程为()设,的垂直平分线过点,的斜率存在当直线的斜率时,当且仅当时,当直线的斜率时, 设消去得:由 ,的中点为由直线的垂直关系有,化简得 由得又到直线的距离为,时,由,解得;即时,;综上:;20【答案】【解析】解:(1)f(x)x2axa2ln x的定义域为x|x0,f(x)2xa.当a0时,由f(x)0得x,由f(x)0得0x.此时f(x)在(0,)上单调递增,在(,)上单调递减;当a0时,由f(x)0得xa,由f(x)0得0xa,此时f(x)在(0,a)上单调递增,在(a,)上单调递减(2)假设存在满足条件的实数a,x1,e时,f(x)e1,e2,f(1)1ae1,即ae,由(1)知f(x)在(0,a)上单调递增,f(x)在1,e上单调递增,f(e)e2aee2e2,即ae,由可得ae,故存在ae,满足条件 21【答案】(1)或;(2).【解析】试题解析:(1)由题意不等式可化为,当时,解得,即;当时,解得,即;当时,解得,即 (4分)综上所述,不等式的解集为或. (5分)(2)由不等式可得,分离参数,得,故实数的最小值是. (10分)考点:绝对值三角不等式;绝对值不等式的解法122【答案】 【解析】 解:()点A是单位圆与x轴正半轴的交点,B(,)可得sin=,cos=,cos+sin=()因为P(cos2,sin2),A(1,0)所以=(1+cos2,sin2),所以=2|cos|,因为,所以=2|cos|,|的最大值【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力23【答案】 【解析】解:(1)PA平面ABCD,CD平面ABCD,PACDADCD,PA、AD是平面PAD内的相交直线,CD平面PADCD平面PDC,平面PDC平面PAD;(2)取AD中点O,连接EO,PAD中,EO是中位线,EOPAPA平面ABCD,EO平面ABCD,AC平面ABCD,EOAC过O作OFAC于F,连接EF,则EO、OF是平面OEF内的相交直线,AC平面OEF,所以EFACEFO就是二面角EACD的平面角由PA=2,得EO=1,在RtADC中,设AC边上的高为h,则ADDC=ACh,得h=O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电子商务平台广告推广合作协议范本
- 二零二五年度房地产合同负债融资及风险管理顾问协议
- 二零二五版工业用地承包经营合同范本
- 二零二五年度离婚夫妻债权分割、财产处理及债务协议
- 2025版建筑工程施工合同纠纷调解与仲裁指南
- 二零二五年度办公室清洁与消毒一体化服务合同模板
- 2025版农业科技项目居间转让合同
- 2025版开发商与银行项目贷款合同下载
- 二零二五年度安防监控系统安全漏洞修复合同
- 二零二五年度工地施工临时设施拆除与垃圾清运合同
- 抚养费纠纷民事起诉状(10篇)
- 2025年郑州铁路职业技术学院单招职业适应性测试题库必考题
- 皮肤美容注射培训课件
- 核安全863文化宣讲
- 七年级数学下册 第二学期 期末测试卷(冀教河北版 2025年春)
- 初中班主任培训讲座课件(27p)-2024鲜版
- 华为三化一稳定、严进严出培训教材
- 数据驱动的智能家政服务平台研究
- 锅炉隐患排查治理制度
- 《小儿拍背排痰》课件
- 安全管理竞聘报告
评论
0/150
提交评论