宁河区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
宁河区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
宁河区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
宁河区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
宁河区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁河区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 数列中,对所有的,都有,则等于( )A B C D2 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A92%B24%C56%D5.6%3 定义在R上的偶函数在0,7上是增函数,在7,+)上是减函数,又f(7)=6,则f(x)( )A在7,0上是增函数,且最大值是6B在7,0上是增函数,且最小值是6C在7,0上是减函数,且最小值是6D在7,0上是减函数,且最大值是64 设奇函数f(x)在(0,+)上为增函数,且f(1)=0,则不等式0的解集为( )A(1,0)(1,+)B(,1)(0,1)C(,1)(1,+)D(1,0)(0,1)5 设为虚数单位,则()A B C D6 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队首发要求每个班至少1人,至多2人,则首发方案数为( )A720B270C390D3007 若ab,则下列不等式正确的是( )ABa3b3Ca2b2Da|b|8 等比数列an满足a1=3,a1+a3+a5=21,则a2a6=( )A6B9C36D729 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A35BCD5310设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为( )ABCD3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想11复数Z=(i为虚数单位)在复平面内对应点的坐标是( )A(1,3)B(1,3)C(3,1)D(2,4) 12直线的倾斜角为( )A B C D二、填空题13已知函数,是函数的一个极值点,则实数 14函数f(x)=log(x22x3)的单调递增区间为15若正数m、n满足mnmn=3,则点(m,0)到直线xy+n=0的距离最小值是16设p:f(x)=ex+lnx+2x2+mx+1在(0,+)上单调递增,q:m5,则p是q的条件17函数y=f(x)的图象在点M(1,f(1)处的切线方程是y=3x2,则f(1)+f(1)=18甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 三、解答题19对于任意的nN*,记集合En=1,2,3,n,Pn=若集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质如当n=2时,E2=1,2,P2=x1,x2P2,且x1x2,不存在kN*,使x1+x2=k2,所以P2具有性质()写出集合P3,P5中的元素个数,并判断P3是否具有性质()证明:不存在A,B具有性质,且AB=,使E15=AB()若存在A,B具有性质,且AB=,使Pn=AB,求n的最大值 20已知集合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0(1)求AB(2)若AC=C,求实数m的取值范围21(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变换后得到曲线(1)求曲线的参数方程;(2)若点的在曲线上运动,试求出到曲线的距离的最小值22已知数列an满足a1=,an+1=an+(nN*)证明:对一切nN*,有();()0an123(本小题满分12分)如图(1),在三角形中,为其中位线,且,若沿将三角形折起,使,构成四棱锥,且.(1)求证:平面 平面;(2)当 异面直线与所成的角为时,求折起的角度.24在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系已知直线l过点P(1,0),斜率为,曲线C:=cos2+8cos()写出直线l的一个参数方程及曲线C的直角坐标方程;()若直线l与曲线C交于A,B两点,求|PA|PB|的值 宁河区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】试题分析:由,则,两式作商,可得,所以,故选C考点:数列的通项公式2 【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.03210+0.02410=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是3 【答案】D【解析】解:函数在0,7上是增函数,在7,+)上是减函数,函数f(x)在x=7时,函数取得最大值f(7)=6,函数f(x)是偶函数,在7,0上是减函数,且最大值是6,故选:D4 【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(1)=f(1)=0,又f(x)在(0,+)上为增函数,则奇函数f(x)在(,0)上也为增函数,当0x1时,f(x)f(1)=0,得0,满足;当x1时,f(x)f(1)=0,得0,不满足,舍去;当1x0时,f(x)f(1)=0,得0,满足;当x1时,f(x)f(1)=0,得0,不满足,舍去;所以x的取值范围是1x0或0x1故选D5 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C6 【答案】C 解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: +=390故选:C7 【答案】B【解析】解:ab,令 a=1,b=2,代入各个选项检验可得:=1, =,显然A不正确a3=1,b3=6,显然 B正确 a2 =1,b2=4,显然C不正确a=1,|b|=2,显然D 不正确故选 B【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法8 【答案】D【解析】解:设等比数列an的公比为q,a1=3,a1+a3+a5=21,3(1+q2+q4)=21,解得q2=2则a2a6=9q6=72故选:D9 【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题10【答案】B【解析】11【答案】A【解析】解:复数Z=(1+2i)(1i)=3+i在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的运算法则、几何意义,属于基础题12【答案】C【解析】试题分析:由直线,可得直线的斜率为,即,故选C.1考点:直线的斜率与倾斜角.二、填空题13【答案】5【解析】试题分析:考点:导数与极值14【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)15【答案】 【解析】解:点(m,0)到直线xy+n=0的距离为d=,mnmn=3,(m1)(n1)=4,(m10,n10),(m1)+(n1)2,m+n6,则d=3故答案为:【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题16【答案】必要不充分 【解析】解:由题意得f(x)=ex+4x+m,f(x)=ex+lnx+2x2+mx+1在(0,+)内单调递增,f(x)0,即ex+4x+m0在定义域内恒成立,由于+4x4,当且仅当=4x,即x=时等号成立,故对任意的x(0,+),必有ex+4x5mex4x不能得出m5但当m5时,必有ex+4x+m0成立,即f(x)0在x(0,+)上成立p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故答案为:必要不充分17【答案】4 【解析】解:由题意得f(1)=3,且f(1)=312=1所以f(1)+f(1)=3+1=4故答案为4【点评】本题主要考查导数的几何意义,要注意分清f(a)与f(a)18【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好三、解答题19【答案】【解析】解:()对于任意的nN*,记集合En=1,2,3,n,Pn=集合P3,P5中的元素个数分别为9,23,集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质,P3不具有性质.证明:()假设存在A,B具有性质,且AB=,使E15=AB其中E15=1,2,3,15因为1E15,所以1AB,不妨设1A因为1+3=22,所以3A,3B同理6A,10B,15A因为1+15=42,这与A具有性质矛盾所以假设不成立,即不存在A,B具有性质,且AB=,使E15=AB.解:()因为当n15时,E15Pn,由()知,不存在A,B具有性质,且AB=,使Pn=AB若n=14,当b=1时,取A1=1,2,4,6,9,11,13,B1=3,5,7,8,10,12,14,则A1,B1具有性质,且A1B1=,使E14=A1B1当b=4时,集合中除整数外,其余的数组成集合为,令,则A2,B2具有性质,且A2B2=,使当b=9时,集中除整数外,其余的数组成集合,令,则A3,B3具有性质,且A3B3=,使集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1A2A3C,B=B1B2B3,则AB=,且P14=AB综上,所求n的最大值为14.【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用20【答案】 【解析】解:由合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0A=x|1x6,C=x|mxm+9(1),(2)由AC=C,可得AC即,解得3m121【答案】(1)(为参数);(2).【解析】试题解析:(1)将曲线(为参数),化为,由伸缩变换化为,代入圆的方程,得到,可得参数方程为;考点:坐标系与参数方程22【答案】 【解析】证明:()数列an满足a1=,an+1=an+(nN*),an0,an+1=an+0(nN*),an+1an=0,对一切nN*,()由()知,对一切kN*,当n2时,=31+=31+=3(1+1)=,an1,又,对一切nN*,0an1【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用23【答案】(1)证明见解析;(2)【解析】试题分析:(1)可先证,从而得到平面,再证,可得平面,由,可证明平面平面;(2)由,取的中点,连接,可得即为异面直线与所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1试题解析:(2)因为,取的中点,连接,所以,又,所以,从而四边形为平行四边形,所以,得;同时,因为,所以,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论