八宿县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
八宿县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
八宿县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
八宿县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
八宿县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八宿县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知等差数列an满足2a3a+2a13=0,且数列bn 是等比数列,若b8=a8,则b4b12=( )A2B4C8D162 若某算法框图如图所示,则输出的结果为( )A7B15C31D633 已知双曲线(a0,b0)的右焦点F,直线x=与其渐近线交于A,B两点,且ABF为钝角三角形,则双曲线离心率的取值范围是( )ABCD4 下列函数中哪个与函数y=x相等( )Ay=()2By=Cy=Dy=5 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.6 抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=27 已知三棱锥ABCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()AB或36+C36D或368 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+9 已知是ABC的一个内角,tan=,则cos(+)等于( )ABCD10设函数f(x)=,则f(1)=( )A0B1C2D311函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)12sin(510)=( )ABCD二、填空题13(x)6的展开式的常数项是(应用数字作答)14设f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是15在空间直角坐标系中,设,且,则 .16如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km17已知圆O:x2+y2=1和双曲线C:=1(a0,b0)若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则=18抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=三、解答题19如图,在三棱柱中,(1)求证:平面;(2)若,求三棱锥的体积20已知椭圆E: =1(ab0)的焦距为2,且该椭圆经过点()求椭圆E的方程;()经过点P(2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值21已知函数f(x)=alnxx(a0)()求函数f(x)的最大值;()若x(0,a),证明:f(a+x)f(ax);()若,(0,+),f()=f(),且,证明:+222我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:100500元6001000总计2039106164059151934总计252550(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率23(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下: 销售量/千克()求频率分布直方图中的的值,并估计每天销售量的中位数;()这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值24(本题满分12分)已知向量,记函数.(1)求函数的单调递增区间;(2)在中,角的对边分别为且满足,求的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.八宿县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16故选:D2 【答案】 D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A5,B=3,A=2满足条件A5,B=7,A=3满足条件A5,B=15,A=4满足条件A5,B=31,A=5满足条件A5,B=63,A=6不满足条件A5,退出循环,输出B的值为63故选:D【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题3 【答案】D【解析】解:函数f(x)=(x3)ex,f(x)=ex+(x3)ex=(x2)ex,令f(x)0,即(x2)ex0,x20,解得x2,函数f(x)的单调递增区间是(2,+)故选:D【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目4 【答案】B【解析】解:A函数的定义域为x|x0,两个函数的定义域不同B函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数C函数的定义域为R,y=|x|,对应关系不一致D函数的定义域为x|x0,两个函数的定义域不同故选B【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数5 【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.6 【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置7 【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界), 有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或故选D8 【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目9 【答案】B【解析】解:由于是ABC的一个内角,tan=,则=,又sin2+cos2=1,解得sin=,cos=(负值舍去)则cos(+)=coscossinsin=()=故选B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题10【答案】D【解析】解:f(x)=,f(1)=ff(7)=f(5)=3故选:D11【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反12【答案】C【解析】解:sin(510)=sin(150)=sin150=sin30=,故选:C二、填空题13【答案】160 【解析】解:由于(x)6展开式的通项公式为 Tr+1=(2)rx62r,令62r=0,求得r=3,可得(x)6展开式的常数项为8=160,故答案为:160【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题14【答案】(2,0)(2,+) 【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为增函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是减函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(2,0)(2,+)故答案为:(2,0)(2,+)15【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算16【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为17【答案】1 【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(1,t),则B(1,t),C(1,t),D(1,t),由直线和圆相切的条件可得,t=1将A(1,1)代入双曲线方程,可得=1故答案为:1【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题18【答案】3 【解析】解:抛物线y2=4x=2px,p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=4=x+=4,x=3,故答案为:3【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解三、解答题19【答案】(1)证明见解析;(2).【解析】试题分析:(1)有线面垂直的性质可得,再由菱形的性质可得,进而有线面垂直的判定定理可得结论;(2)先证三角形为正三角形,再由于勾股定理求得的值,进而的三角形的面积,又知三棱锥的高为,利用棱锥的体积公式可得结果.考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.20【答案】 【解析】解:()由题意得,2c=2, =1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;()由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2k1矛盾当k10时,直线PM:y=k1(x+2);由得,(+4)y2=0;解得,yM=;M(,),同理N(,),由直线MN与y轴垂直,则=;(k2k1)(4k2k11)=0,k2k1=【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题21【答案】 【解析】解:()令,所以x=a易知,x(0,a)时,f(x)0,x(a,+)时,f(x)0故函数f(x)在(0,a)上递增,在(a,+)递减故f(x)max=f(a)=alnaa()令g(x)=f(ax)f(a+x),即g(x)=aln(ax)aln(a+x)+2x所以,当x(0,a)时,g(x)0所以g(x)g(0)=0,即f(a+x)f(ax)()依题意得:a,从而a(0,a)由()知,f(2a)=fa+(a)fa(a)=f()=f()又2aa,a所以2a,即+2a【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用22【答案】 【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论