




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
顺昌县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 复数的值是( )A B C D【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题2 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.233 若函数f(x)=loga(2x2+x)(a0且a1)在区间(0,)内恒有f(x)0,则f(x)的单调递增区间为( )A(,)B(,+)C(0,+)D(,)4 已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )A B C D5 已知点A(2,0),点M(x,y)为平面区域上的一个动点,则|AM|的最小值是( )A5B3C2D6 如图框内的输出结果是( )A2401B2500C2601D27047 圆()与双曲线的渐近线相切,则的值为( )A B C D【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力8 下列说法正确的是( ) A.圆锥的侧面展开图是一个等腰三角形; B.棱柱即是两个底面全等且其余各面都是矩形的多面体; C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥; D.通过圆台侧面上的一点,有无数条母线. 9 已知a=log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是( )AabcBcabCacbDbca10如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力11已知函数,若,则( )A1B2C3D-112已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD二、填空题13设函数f(x)=,若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是14已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 15方程有两个不等实根,则的取值范围是 16已知直线:()被圆:所截的弦长是圆心到直线的距离的2倍,则 .17若函数f(x)=,则f(7)+f(log36)=18已知线性回归方程=9,则b=三、解答题19(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力20已知,且(1)求sin,cos的值;(2)若,求sin的值21如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥ABCDE,使AC=(1)证明:平面AED平面BCDE;(2)求二面角EACB的余弦值 22(本小题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于和()两点,且(I)求该抛物线的方程;(II)如图所示,设为坐标原点,取上不同于的点,以为直径作圆与相交另外一点,求该圆面积的最小值时点的坐标23某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?24(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残存的农药y(单位:微克)的统计表: xi12345yi5753403010(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;(2)若用解析式ycx2d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ix,有下列数据处理信息:11,38,(i)(yi)811, (i)2374,对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线方程ybxa的斜率和截距的最小二乘估计分别为 (3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水(结果保留1位有效数字)顺昌县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】【解析】2 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程3 【答案】D【解析】解:当x(0,)时,2x2+x(0,1),0a1,函数f(x)=loga(2x2+x)(a0,a1)由f(x)=logat和t=2x2+x复合而成,0a1时,f(x)=logat在(0,+)上是减函数,所以只要求t=2x2+x0的单调递减区间t=2x2+x0的单调递减区间为(,),f(x)的单调增区间为(,),故选:D【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件4 【答案】D【解析】试题分析:由已知,所以,则,令 ,得,可知D正确故选D考点:三角函数的对称性5 【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y2=0的距离,即|AM|min=故选:D【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义6 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+99=2500,故选:B【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题7 【答案】C8 【答案】C【解析】考点:几何体的结构特征.9 【答案】C【解析】解:由对数和指数的性质可知,a=log20.30b=20.120=1c=0.21.3 0.20=1acb故选C10【答案】D【解析】11【答案】A【解析】g(1)=a1,若fg(1)=1,则f(a1)=1,即5|a1|=1,则|a1|=0,解得a=112【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D二、填空题13【答案】a1或a2 【解析】解:当a=1时,f(x)=,当x1时,f(x)=2x1为增函数,f(x)1,当x1时,f(x)=4(x1)(x2)=4(x23x+2)=4(x)21,当1x时,函数单调递减,当x时,函数单调递增,故当x=时,f(x)min=f()=1,设h(x)=2xa,g(x)=4(xa)(x2a)若在x1时,h(x)=与x轴有一个交点,所以a0,并且当x=1时,h(1)=2a0,所以0a2,而函数g(x)=4(xa)(x2a)有一个交点,所以2a1,且a1,所以a1,若函数h(x)=2xa在x1时,与x轴没有交点,则函数g(x)=4(xa)(x2a)有两个交点,当a0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2a0时,即a2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是a1,或a214【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键15【答案】【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,直线的图象恒过定点,结合图象,可知,当过点时,当直线与圆相切时,即,解得,所以实数的取值范围是.111考点:直线与圆的位置关系的应用【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.16【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.17【答案】5 【解析】解:f(x)=,f(7)=log39=2,f(log36)=+1=,f(7)+f(log36)=2+3=5故答案为:518【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题三、解答题19【答案】(1);(2).【解析】20【答案】 【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sincos+cos2=1+sin=,sin=,(,),cos=;(2)(,),(0,),+(,),sin(+)=0,+(,),cos(+)=,则sin=sin=sin(+)coscos(+)sin=()()=+=【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键21【答案】 【解析】(1)证明:取ED的中点为O,由题意可得AED为等边三角形,AC2=AO2+OC2,AOOC,又AOED,EDOC=O,AO面ECD,又AOAED,平面AED平面BCDE;(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,1,0),A(0,0,),C(,0,0),B(,2,0),设面EAC的法向量为,面BAC的法向量为由,得,由,得,二面角EACB的余弦值为2016年5月3日22【答案】【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力因为,化简得 ,所以,当且仅当即16,时等号成立. 圆的直径,因为64,所以当64即=8时,所以所求圆的面积的最小时,点的坐标为23【答案】 【解析】解:(1)依题意得:当0x4时,y=10;(2分)当4x18时,y=10+1.5(x4)=1.5x+4当x18时,y=10+1.514+2(x18)=2x5(8分)(9分)(2)x=30,y=2305=55(12分)【点评】本题考查函数模型的建立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店业智慧客房服务与顾客体验提升方案设计
- 合资企业分公司成立协议范本
- 农业合作社发展资金筹措方案
- 通信设备行业研发流程优化管理方案
- 游戏电竞行业电子竞技产业开发与运营方案
- 湖南软件职业技术大学《综合项目设计》2024-2025学年第一学期期末试卷
- 延误工期后抢工措施实施方案
- 地震灾害下企业应急救援演练方案
- 2025年食品检验工(技师)食品营养与安全考试试卷
- 2025年美甲师美甲行业市场推广与宣传考试试卷
- 福建省南平市(2024年-2025年小学六年级语文)部编版期末考试(下学期)试卷及答案
- 盘扣用量表0822(含公式)
- 检验科6s管理实施
- 二十案例示轮回
- ABC法则新-培训课件
- 医疗器械经营质量管理制度和工作程序目录
- 核心能力建设规划
- 城市屋顶光伏发电施工方案
- 净菜项目可行性研究报告
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 初中英语语法练习题100道(附答案)
评论
0/150
提交评论