孝义市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
孝义市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
孝义市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
孝义市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
孝义市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

孝义市高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD2 如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,),AOC=,若|BC|=1,则cos2sincos的值为( )ABCD3 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)4 已知函数f(x)=lnx+2x6,则它的零点所在的区间为( )A(0,1)B(1,2)C(2,3)D(3,4)5 已知是虚数单位,若复数()的实部与虚部相等,则( )A B C D 6 设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=( )A1iB1+iC1+iD1i7 阅读右图所示的程序框图,若,则输出的的值等于( )A28 B36 C45 D1208 已知向量,若,则实数( )A. B.C. D. 【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力9 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A B C D10函数有两个不同的零点,则实数的取值范围是( )A B C D11函数,的值域为( ) A. B. C. D.12已知2a=3b=m,ab0且a,ab,b成等差数列,则m=( )ABCD6二、填空题13某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元14如图,ABC是直角三角形,ACB=90,PA平面ABC,此图形中有个直角三角形15已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为16某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示根据条形图可得这50名学生这一天平均的课外阅读时间为小时17函数在区间上递减,则实数的取值范围是 18已知圆的方程为,过点的直线与圆交于两点,若使最小则直线的方程是 三、解答题19已知函数的定义域为集合,(1)求,;(2)若,求实数的取值范围.20如图,直四棱柱ABCDA1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点(1)证明:平面MNE平面D1DE;(2)证明:MN平面D1DE21(本小题满分10分)选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)当时,求的取值范围.22某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形()求出f(5);()利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式23如图,点A是以线段BC为直径的圆O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P(1)求证:BF=EF;(2)求证:PA是圆O的切线24已知数列an的前n项和为Sn,且Sn=an,数列bn中,b1=1,点P(bn,bn+1)在直线xy+2=0上(1)求数列an,bn的通项an和bn;(2)设cn=anbn,求数列cn的前n项和Tn孝义市高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题2 【答案】 A【解析】解:|BC|=1,点B的坐标为(,),故|OB|=1,BOC为等边三角形,BOC=,又AOC=,AOB=,cos()=,sin()=,sin()=cos=cos()=coscos()+sinsin() =+=,sin=sin()=sincos()cossin()=cos2sincos=(2cos21)sin=cossin=,故选:A【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题3 【答案】C【解析】解: =f(x0),故选C4 【答案】C【解析】解:易知函数f(x)=lnx+2x6,在定义域R+上单调递增因为当x0时,f(x);f(1)=40;f(2)=ln220;f(3)=ln30;f(4)=ln4+20可见f(2)f(3)0,故函数在(2,3)上有且只有一个零点故选C5 【答案】A考点:复数运算6 【答案】B【解析】解:设z=a+bi(a,bR),则=abi,由z=2(+i),得(a+bi)(abi)=2a+(b1)i,整理得a2+b2=2a+2(b1)i则,解得所以z=1+i故选B【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题7 【答案】C 【解析】解析:本题考查程序框图中的循环结构,当时,选C8 【答案】B【解析】由知,解得,故选B.9 【答案】C【解析】考点:三视图10【答案】B【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B. (1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程零点个数的常用方法:直接法:可利用判别式的正负直接判定一元二次方程根的个数;转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.本题的解答就利用了方法.11【答案】A【解析】试题分析:函数在区间上递减,在区间上递增,所以当x=1时,当x=3时,所以值域为。故选A。考点:二次函数的图象及性质。12【答案】C【解析】解:2a=3b=m,a=log2m,b=log3m,a,ab,b成等差数列,2ab=a+b,ab0,+=2,=logm2, =logm3,logm2+logm3=logm6=2,解得m=故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用二、填空题13【答案】7.5 【解析】解:由表格可知=9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,4=0.79+,=2.3,这组数据对应的线性回归方程是=0.7x2.3,x=14,=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错14【答案】4 【解析】解:由PA平面ABC,则PAC,PAB是直角三角形,又由已知ABC是直角三角形,ACB=90所以BCAC,从而易得BC平面PAC,所以BCPC,所以PCB也是直角三角形,所以图中共有四个直角三角形,即:PAC,PAB,ABC,PCB故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键15【答案】(,0) y=2x 【解析】解:双曲线的a=2,b=4,c=2,可得焦点的坐标为(,0),渐近线方程为y=x,即为y=2x故答案为:(,0),y=2x【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题16【答案】0.9 【解析】解:由题意, =0.9,故答案为:0.917【答案】【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以.考点:二次函数图象与性质18【答案】【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距离等于,小于圆的半径,所以点在圆内,所以当时,最小,此时,由点斜式方程可得,直线的方程为,即.考点:直线与圆的位置关系的应用.三、解答题19【答案】(1),;(2)或。【解析】试题分析:(1)由题可知:,所以,因此集合,画数轴表示出集合A,集合B,观察图形可求,观察数轴,可以求出,则;(2)由可得:,分类讨论,当时,解得:,当时,若,则应满足,即,所以,因此满足的实数的取值范围是:或。试题解析:(1):由得:, =(2)当B=时,当时,即或 。考点:1.函数的定义域;2.集合的运算;3.集合间的关系。20【答案】 【解析】证明:(1)由等腰梯形ABCD中,AB=CD=AD=1,BC=2,N是AB的中点,NEDE,又NEDD1,且DD1DE=D,NE平面D1DE,又NE平面MNE,平面MNE平面D1DE(2)等腰梯形ABCD中,AB=CD=AD=1,BC=2,N是AB的中点,ABDE,AB平面D1DE,又DD1BB1,则BB1平面D1DE,又ABBB1=B,平面ABB1A1平面D1DE,又MN平面ABB1A1,MN平面D1DE21【答案】(1);(2).【解析】试题解析:(1)因为,所以,即,当时,从而;当时,从而不等式无解;当时,从而;综上,不等式的解集为.(2)由,得,因为,所以当时,;当时,记不等式的解集为,则,故,所以的取值范围是.考点:1.含绝对值的不等式;2.分类讨论.22【答案】 【解析】解:()f(1)=1,f(2)=5,f(3)=13,f(4)=25,f(2)f(1)=4=41f(3)f(2)=8=42,f(4)f(3)=12=43,f(5)f(4)=16=44f(5)=25+44=41()由上式规律得出f(n+1)f(n)=4nf(2)f(1)=41,f(3)f(2)=42,f(4)f(3)=43,f(n1)f(n2)=4(n2),f(n)f(n1)=4(n1)f(n)f(1)=41+2+(n2)+(n1)=2(n1)n,f(n)=2n22n+123【答案】 【解析】证明:(1)BC是圆O的直径,BE是圆O的切线,EBBC又ADBC,ADBE可得BFCDGC,FECGAC,得G是AD的中点,即DG=AGBF=EF(2)连接AO,ABBC是圆O的直径,BAC=90由(1)得:在RtBAE中,F是斜边BE的中点,AF=FB=EF,可得FBA=FAB又OA=OB,ABO=BAOBE是圆O的切线,EBO=90,得EBO=FBA+ABO=FAB+BAO=FAO=90,PAOA,由圆的切线判定定理,得PA是圆O的切线【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题24【答案】 【解析】解:(1)Sn=an,当n2时,an=SnSn1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论