




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷阳泉市民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下列满足“xR,f(x)+f(x)=0且f(x)0”的函数是( )Af(x)=xe|x|Bf(x)=x+sinxCf(x)=Df(x)=x2|x|2 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD3 在ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2c2=3bc,则A等于( )A30B60C120D1504 函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称5 已知全集,集合,集合,则集合为( ) A. B. C. D.【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.6 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A =1.23x+4B =1.23x0.08C =1.23x+0.8D =1.23x+0.087 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A11B11.5C12D12.58 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限9 已知集合,且使中元素和中的元素对应,则的值分别为( )A B C D10若函数f(x)=kaxax,(a0,a1)在(,+)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是( )ABCD11已知函数f(x)=x22x+3在0,a上有最大值3,最小值2,则a的取值范围( )A1,+)B0.2C1,2D(,212线段AB在平面内,则直线AB与平面的位置关系是( )AABBABC由线段AB的长短而定D以上都不对二、填空题13下列命题:终边在y轴上的角的集合是a|a=,kZ;在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;把函数y=3sin(2x+)的图象向右平移个单位长度得到y=3sin2x的图象;函数y=sin(x)在0,上是减函数其中真命题的序号是14已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是_ 15将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的值是 16设集合A=3,0,1,B=t2t+1若AB=A,则t=17ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,则c的值为18设全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,若NM,则实数a的取值范围是三、解答题19(本小题满分10分)选修:几何证明选讲 如图所示,已知与相切,为切点,过点的割线交圆于两点,弦,相 交于点,为上一点,且()求证:;()若,求的长20已知抛物线C:x2=2y的焦点为F()设抛物线上任一点P(m,n)求证:以P为切点与抛物线相切的方程是mx=y+n;()若过动点M(x0,0)(x00)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明21已知函数f(x)=loga(x2+2),若f(5)=3;(1)求a的值; (2)求的值; (3)解不等式f(x)f(x+2)22(本小题满分12分)已知函数()(1)当时,求函数在上的最大值和最小值;(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;23已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和24等差数列an 中,a1=1,前n项和Sn满足条件,()求数列an 的通项公式和Sn;()记bn=an2n1,求数列bn的前n项和Tn阳泉市民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:满足“xR,f(x)+f(x)=0,且f(x)0”的函数为奇函数,且在R上为减函数,A中函数f(x)=xe|x|,满足f(x)=f(x),即函数为奇函数,且f(x)=0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(x)=f(x),即函数为奇函数,但f(x)=1+cosx0,在R上是增函数,C中函数f(x)=,满足f(x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(x)=f(x),故函数为偶函数,故选:A2 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题3 【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2c2=3bc,可得a2=7c2,所以cosA=,0A180,A=120故选:C【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查4 【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C5 【答案】C.【解析】由题意得,故选C.6 【答案】D【解析】解:设回归直线方程为=1.23x+a样本点的中心为(4,5),5=1.234+aa=0.08回归直线方程为=1.23x+0.08故选D【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题7 【答案】C【解析】解:由题意,0.065+x0.1=0.5,所以x为2,所以由图可估计样本重量的中位数是12故选:C8 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A9 【答案】D【解析】试题分析:分析题意可知:对应法则为,则应有(1)或(2),由于,所以(1)式无解,解(2)式得:。故选D。考点:映射。10【答案】C【解析】解:函数f(x)=kaxax,(a0,a1)在(,+)上是奇函数则f(x)+f(x)=0即(k1)(axax)=0则k=1又函数f(x)=kaxax,(a0,a1)在(,+)上是增函数则a1则g(x)=loga(x+k)=loga(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(x)+f(x)=0,若函数在其定义域为为偶函数,则f(x)f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数减函数=增函数也是解决本题的关键11【答案】C【解析】解:f(x)=x22x+3=(x1)2+2,对称轴为x=1所以当x=1时,函数的最小值为2当x=0时,f(0)=3由f(x)=3得x22x+3=3,即x22x=0,解得x=0或x=2要使函数f(x)=x22x+3在0,a上有最大值3,最小值2,则1a2故选C【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次 函数的基本方法12【答案】A【解析】解:线段AB在平面内,直线AB上所有的点都在平面内,直线AB与平面的位置关系:直线在平面内,用符号表示为:AB故选A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上二、填空题13【答案】 【解析】解:、终边在y轴上的角的集合是a|a=,kZ,故错误;、设f(x)=sinxx,其导函数y=cosx10,f(x)在R上单调递减,且f(0)=0,f(x)=sinxx图象与轴只有一个交点f(x)=sinx与y=x 图象只有一个交点,故错误;、由题意得,y=3sin2(x)+=3sin2x,故正确;、由y=sin(x)=cosx得,在0,上是增函数,故错误故答案为:【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键14【答案】【解析】因为只有是中的最小项,所以,所以,故正确;,故正确;,无法判断符号,故错误,故正确答案答案: 15【答案】【解析】考点:点关于直线对称;直线的点斜式方程.16【答案】0或1 【解析】解:由AB=A知BA,t2t+1=3t2t+4=0,无解 或t2t+1=0,无解 或t2t+1=1,t2t=0,解得 t=0或t=1故答案为0或1【点评】本题考查集合运算及基本关系,掌握好概念是基础正确的转化和计算是关键17【答案】 【解析】解:ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,由正弦定理可得:,解得:a=3,利用余弦定理:a2=b2+c22bccosA,可得:9=4+c22c,即c22c5=0,解得:c=1+,或1(舍去)故答案为:【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题18【答案】,1 【解析】解:全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,NM,2a11 且4a2,解得 2a,故实数a的取值范围是,1,故答案为,1三、解答题19【答案】【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力20【答案】 【解析】证明:()由抛物线C:x2=2y得,y=x2,则y=x,在点P(m,n)切线的斜率k=m,切线方程是yn=m(xm),即yn=mxm2,又点P(m,n)是抛物线上一点,m2=2n,切线方程是mx2n=yn,即mx=y+n ()直线MF与直线l位置关系是垂直由()得,设切点为P(m,n),则切线l方程为mx=y+n,切线l的斜率k=m,点M(,0),又点F(0,),此时,kMF= kkMF=m()=1,直线MF直线l 【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题21【答案】 【解析】解:(1)f(5)=3,即loga27=3解锝:a=3(2)由(1)得函数,则=(3)不等式f(x)f(x+2),即为化简不等式得函数y=log3x在(0,+)上为增函数,且的定义域为Rx2+2x2+4x+6即4x4,解得x1,所以不等式的解集为:(1,+)22【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力(2)当时,假设存在实数,使有最小值3,7分当时,在上单调递减,(舍去)8分当时,在上单调递减,在上单调递增,满足条件10分当时,在上单调递减,(舍去),11分综上,存在实数,使得当时,函数最小值是312分 23【答案】 【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设Tr+1为常数项,则:Tr+1=C9r=C9r2r,由r=0,得r=3,常数项为:C9323=672;(2)令x=1,得(1+2)9=39【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题24【答案】 【解析】解:()设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2a1=2,所以an=a1+(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年男科疾病诊断治疗规范考核答案及解析
- 2025年公务员考试时事政治测试卷附参考答案详解(精练)题型大全
- 2025年中共西林县委西林县人民政府接待办公室招聘编外聘用人员考前自测高频考点模拟试题及答案详解(各地真题)
- 浦发银行南宁市兴宁区2025秋招笔试综合模拟题库及答案
- 2025辅警招聘考试考前冲刺测试卷附参考答案详解(培优A卷)
- 浦发银行拉萨市城关区2025秋招笔试性格测试题专练及答案
- 2025年法律职业资格考试高频难、易错点题含答案详解【培优】
- 【论文-教育教学】农村小学“家校协同评价”机制的实践困境与对策
- 2024-2025学年广播电视编辑记者考试综合练习及完整答案详解【有一套】
- 平安银行天津市东丽区2025秋招笔试英语题专练及答案
- 杭州2025网约车区域考试试题和答案
- 2025广西崇左凭祥市委宣传部招聘编外工作人员1人考试参考题库及答案解析
- 2025江西赣州南康赣商村镇银行招聘4人考试参考题库及答案解析
- 应用代码安全培训
- 养生保健的四季保养总结
- 学生伤害事故的责任分析和处理案例
- 隧道防排水检查井技术交底书
- 《历史》中职课件05第五章
- TSS-UT811-001UT-811线路保护测控装置调试说明书V1[1]0.
- (终稿)加油站全流程诊断与优化提量指导手册
- EN779-2012一般通风过滤器——过滤性能测定(中文版)
评论
0/150
提交评论