东山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
东山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
东山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
东山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
东山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷东山区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设是偶函数,且在上是增函数,又,则使的的取值范围是( )A或 B或 C D或2 在ABC中,若A=2B,则a等于( )A2bsinAB2bcosAC2bsinBD2bcosB3 如图所示,函数y=|2x2|的图象是( )ABCD4 已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD5 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D26 函数y=+的定义域是( )Ax|x1Bx|x1且x3Cx|x1且x3Dx|x1且x37 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )ABCD8 已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D19 记,那么ABCD10若函数f(x)=2sin(x+)对任意x都有f(+x)=f(x),则f()=( )A2或0B0C2或0D2或211一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力12若函数是偶函数,则函数的图象的对称轴方程是( )111.ComA B C D二、填空题13(sinx+1)dx的值为14设为锐角,若sin()=,则cos2=15x为实数,x表示不超过x的最大整数,则函数f(x)=xx的最小正周期是16多面体的三视图如图所示,则该多面体体积为(单位cm)17运行如图所示的程序框图后,输出的结果是18将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的值是 三、解答题19如图,已知几何体的底面ABCD 为正方形,ACBD=N,PD平面ABCD,PD=AD=2EC,ECPD()求异面直线BD与AE所成角:()求证:BE平面PAD;()判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由20已知双曲线过点P(3,4),它的渐近线方程为y=x(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1|PF2|=41,求F1PF2的余弦值21如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E()求证:AE=EB;()若EFFC=,求正方形ABCD的面积 22【南师附中2017届高三模拟二】已知函数(1)试讨论的单调性;(2)证明:对于正数,存在正数,使得当时,有;(3)设(1)中的的最大值为,求得最大值23已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点(1)若以AB为直径的圆经过原点O,求直线l的方程;(2)若线段AB的中垂线交x轴于点Q,求POQ面积的取值范围 24已知函数f(x)=x3+x(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m3)0,求m的取值范围(参考公式:a3b3=(ab)(a2+ab+b2)东山区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B考点:函数的奇偶性与单调性【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的解集.12 【答案】D【解析】解:A=2B,sinA=sin2B,又sin2B=2sinBcosB,sinA=2sinBcosB,根据正弦定理=2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB故选D3 【答案】B【解析】解:y=|2x2|=,x=1时,y=0,x1时,y0故选B【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解4 【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D5 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键6 【答案】D【解析】解:由题意得:,解得:x1或x3,故选:D【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题7 【答案】 D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1)(1)=,故目标被击中的概率为1=,故选:D【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题8 【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论9 【答案】B【解析】【解析1】,所以【解析2】,10【答案】D【解析】解:由题意:函数f(x)=2sin(x+),f(+x)=f(x),可知函数的对称轴为x=,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值f()=2或2故选D11【答案】B 12【答案】A【解析】试题分析:函数向右平移个单位得出的图象,又是偶函数,对称轴方程为,的对称轴方程为.故选A考点:函数的对称性.二、填空题13【答案】2 【解析】解:所求的值为(xcosx)|11=(1cos1)(1cos(1)=2cos1+cos1=2故答案为:214【答案】 【解析】解:为锐角,若sin()=,cos()=,sin= sin()+cos()=,cos2=12sin2=故答案为:【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题15【答案】1,)(9,25 【解析】解:集合,得 (ax5)(x2a)0,当a=0时,显然不成立,当a0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9a25,当a0时,不符合条件,综上,故答案为1,)(9,25【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题16【答案】cm3 【解析】解:如图所示,由三视图可知:该几何体为三棱锥PABC该几何体可以看成是两个底面均为PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:PCD的面积S=44=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=84=cm3,故答案为: cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键17【答案】0 【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+sin的值,由于sin周期为8,所以S=sin+sin+sin=0故答案为:0【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查18【答案】【解析】考点:点关于直线对称;直线的点斜式方程.三、解答题19【答案】【解析】解:()PD平面ABCD,ECPD,EC平面ABCD,又BD平面ABCD,ECBD,底面ABCD为正方形,ACBD=N,ACBD,又ACEC=C,AC,EC平面AEC,BD平面AEC,BDAE,异面直线BD与AE所成角的为90()底面ABCD为正方形,BCAD,BC平面PAD,AD平面PAD,BC平面PAD,ECPD,EC平面PAD,PD平面PAD,EC平面PAD,ECBC=C,EC平面BCE,BC平面BCE,平面BCE平面PAD,BE平面BCE,BE平面PAD() 假设平面PAD与平面PAE垂直,作PA中点F,连结DF,PD平面ABCD,AD CD平面ABCD,PDCD,PDAD,PD=AD,F是PA的中点,DFPA,PDF=45,平面PAD平面PAE,平面PAD平面PAE=PA,DF平面PAD,DF平面PAE,DFPE,PDCD,且正方形ABCD中,ADCD,PDAD=D,CD平面PAD又DF平面PAD,DFCD,PD=2EC,ECPD,PE与CD相交,DF平面PDCE,DFPD,这与PDF=45矛盾,假设不成立即平面PAD与平面PAE不垂直【点评】本题主要考查了线面平行和线面垂直的判定定理的运用考查了学生推理能力和空间思维能力20【答案】 【解析】解:(1)设双曲线的方程为y2x2=(0),代入点P(3,4),可得=16,所求求双曲线的标准方程为(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,又由双曲线的几何性质知|d1d2|=2a=6,d12+d222d1d2=36即有d12+d22=36+2d1d2=118,又|F1F2|=2c=10,|F1F2|2=100=d12+d222d1d2cosF1PF2cosF1PF2=【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求F1PF2的余弦值着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题21【答案】 【解析】证明:()以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EFEC,故AE=EB()设正方形的边长为a,连结BF,BC为圆O的直径,BFEC,在RtBCE中,由射影定理得EFFC=BF2=,BF=,解得a=2,正方形ABCD的面积为4【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养 22【答案】(1)证明过程如解析;(2)对于正数,存在正数,使得当时,有;(3)的最大值为【解析】【试题分析】(1)先对函数进行求导,再对导函数的值的符号进行分析,进而做出判断;(2)先求出函数值,进而分和两种情形进行分析讨论,推断出存在使得,从而证得当时,有成立;(3)借助(2)的结论在上有最小值为,然后分两种情形探求的解析表达式和最大值。证明:(1)由于,且,故在上单调递减,在上单调递增(3)由(2)知在上的最小值为当时,则是方程满足的实根,即满足的实根,所以又在上单调递增,故当时,由于,故此时,综上所述,的最大值为23【答案】 【解析】解:(1)设直线AB的方程为y=kx+2(k0),设A(x1,y1),B(x2,y2),由,得k2x2+(4k4)x+4=0,则由=(4k4)216k2=32k+160,得k,=,所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,因为以AB为直径的圆经过原点O,所以AOB=90,即,所以,解得k=,即所求直线l的方程为y=(2)设线段AB的中点坐标为(x0,y0),则由(1)得,所以线段AB的中垂线方程为,令y=0,得=,又由(1)知k,且k0,得或,所以,所以=,所以POQ面积的取值范围为(2,+)【点评】本题考查直线l的方程的求法和求POQ面积的取值范围考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想 24【答案】 【解析】解:(1)f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论