九原区高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
九原区高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
九原区高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
九原区高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
九原区高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九原区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.12 已知函数f(x)=2x2,则函数y=|f(x)|的图象可能是( )ABCD3 奇函数满足,且在上是单调递减,则的解集为( )ABC D4 函数f(x)=xsinx的图象大致是( )ABC D5 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.236 双曲线:的渐近线方程和离心率分别是( )ABCD7 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A100B150C200D2508 已知ab0,那么下列不等式成立的是( )AabBa+cb+cC(a)2(b)2D9 给出下列两个结论:若命题p:x0R,x02+x0+10,则p:xR,x2+x+10;命题“若m0,则方程x2+xm=0有实数根”的逆否命题为:“若方程x2+xm=0没有实数根,则m0”;则判断正确的是( )A对错B错对C都对D都错10已知函数f(x)=3cos(2x),则下列结论正确的是( )A导函数为B函数f(x)的图象关于直线对称C函数f(x)在区间(,)上是增函数D函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到11已知一三棱锥的三视图如图所示,那么它的体积为( )A B C D12已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A B C D二、填空题13如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是14小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米(太阳光线可看作为平行光线) 15在中,角的对边分别为,若,的面积,则边的最小值为_【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力16如图:直三棱柱ABCABC的体积为V,点P、Q分别在侧棱AA和CC上,AP=CQ,则四棱锥BAPQC的体积为17如果定义在R上的函数f(x),对任意x1x2都有x1f(x1)+x2f(x2)x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数f(x)=3x+1 f(x)=()x+1f(x)=x2+1 f(x)=其中是“H函数”的有(填序号)18计算sin43cos13cos43sin13的值为三、解答题19设函数f(x)=emx+x2mx(1)证明:f(x)在(,0)单调递减,在(0,+)单调递增;(2)若对于任意x1,x2,都有|f(x1)f(x2)|e1,求m的取值范围 20已知二次函数的最小值为1,且(1)求的解析式;(2)若在区间上不单调,求实数的取值范围;(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围21已知函数f(x)=x2(2a+1)x+alnx,aR(1)当a=1,求f(x)的单调区间;(4分)(2)a1时,求f(x)在区间1,e上的最小值;(5分)(3)g(x)=(1a)x,若使得f(x0)g(x0)成立,求a的范围.22(本小题满分12分)数列满足:,且.(1)求数列的通项公式;(2)求数列的前项和.23(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力24如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长九原区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.2 【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象3 【答案】B【解析】试题分析:由,即整式的值与函数的值符号相反,当时,;当时,结合图象即得考点:1、函数的单调性;2、函数的奇偶性;3、不等式.4 【答案】A【解析】解:函数f(x)=xsinx满足f(x)=xsin(x)=xsinx=f(x),函数的偶函数,排除B、C,因为x(,2)时,sinx0,此时f(x)0,所以排除D,故选:A【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力5 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程6 【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D7 【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,样本容量n=5000=100故选:A8 【答案】C【解析】解:ab0,ab0,(a)2(b)2,故选C【点评】本题主要考查不等式的基本性质的应用,属于基础题9 【答案】C【解析】解:命题p是一个特称命题,它的否定是全称命题,p是全称命题,所以正确根据逆否命题的定义可知正确故选C【点评】考查特称命题,全称命题,和逆否命题的概念10【答案】B【解析】解:对于A,函数f(x)=3sin(2x)2=6sin(2x),A错误;对于B,当x=时,f()=3cos(2)=3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x(,)时,2x(,),函数f(x)=3cos(2x)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x)=3co s(2x)的图象,这不是函数f(x)的图象,D错误故选:B【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目11【答案】 B 【解析】解析:本题考查三视图与几何体的体积的计算如图该三棱锥是边长为的正方体中的一个四面体,其中,该三棱锥的体积为,选B12【答案】C【解析】1111试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.二、填空题13【答案】 【解析】解:由题意图形折叠为三棱锥,底面为EFC,高为AC,所以三棱柱的体积:112=,故答案为:【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力14【答案】3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子设BC=x,则根据题意=,AB=x,在AE=ABBE=x1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3【点评】本题主要考查了解三角形的实际应用解题的关键是建立数学模型,把实际问题转化为数学问题15【答案】16【答案】V【解析】【分析】四棱锥BAPQC的体积,底面面积是侧面ACCA的一半,B到侧面的距离是常数,求解即可【解答】解:由于四棱锥BAPQC的底面面积是侧面ACCA的一半,不妨把P移到A,Q移到C,所求四棱锥BAPQC的体积,转化为三棱锥AABC体积,就是:故答案为:17【答案】 【解析】解:对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)x1f(x2)+x2f(x1)恒成立,不等式等价为(x1x2)f(x1)f(x2)0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);f(x)在R递增,符合题意;f(x)在R递减,不合题意;f(x)在(,0)递减,在(0,+)递增,不合题意;f(x)在R递增,符合题意;故答案为:18【答案】 【解析】解:sin43cos13cos43sin13=sin(4313)=sin30=,故答案为三、解答题19【答案】 【解析】解:(1)证明:f(x)=m(emx1)+2x若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0所以,f(x)在(,0)时单调递减,在(0,+)单调递增(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值所以对于任意x1,x2,|f(x1)f(x2)|e1的充要条件是即设函数g(t)=ette+1,则g(t)=et1当t0时,g(t)0;当t0时,g(t)0故g(t)在(,0)单调递减,在(0,+)单调递增又g(1)=0,g(1)=e1+2e0,故当t时,g(t)0当m时,g(m)0,g(m)0,即合式成立;当m1时,由g(t)的单调性,g(m)0,即emme1当m1时,g(m)0,即em+me1综上,m的取值范围是 20【答案】(1);(2);(3).试题解析:(1)由已知,设,由,得,故(2)要使函数不单调,则,则(3)由已知,即,化简得,设,则只要,而,得考点:二次函数图象与性质【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用二次函数的解析式(1)一般式:;(2)顶点式:若二次函数的顶点坐标为,则其解析式为;(3)两根式:若相应一元二次方程的两根为,则其解析式为.21【答案】解:(1)当a=1,f(x)=x23x+lnx,定义域(0,+),(2分),解得x=1或x=,x,(1,+),f(x)0,f(x)是增函数,x(,1),函数是减函数(4分)(2),当1ae时,f(x)min=f(a)=a(lnaa1)当ae时,f(x)在1,a)减函数,(a,+)函数是增函数,综上(9分)(3)由题意不等式f(x)g(x)在区间上有解即x22x+a(lnxx)0在上有解,当时,lnx0x,当x(1,e时,lnx1x,lnxx0,在区间上有解令(10分),x+222lnx时,h(x)0,h(x)是减函数,x(1,e,h(x)是增函数,时,a的取值范围为(14分)22【答案】(1);(2)【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得,变形形式为;(2)由(1)可知,这是数列的后项与前项的差,要求通项公式可用累加法,即由求得试题解析:(1),又,.考点:数列的递推公式,等比数列的通项公式,等比数列的前项和累加法求通项公式23【答案】【解析】(1)由题意,知不等式解集为由,得,2分所以,由,解得4分(2)不等式等价于,由题意知6分 24【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论