




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
耒阳市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM2 在中,则等于( )A B C或 D23 如图,已知正方体ABCDA1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是( )A5B4C4D24 设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD5 已知集合,则A0或B0或3C1或D1或36 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形7 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行8 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( )A2:1B5:2C1:4D3:19 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆10已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D611“互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A10 B20 C30 D4012偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为( )A2B1C0D1二、填空题13一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为14已知f(x)x(exaex)为偶函数,则a_15已知函数,则的值是_,的最小正周期是_.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力16空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点若AC=BD,则四边形EFGH是;若ACBD,则四边形EFGH是17设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为18已知各项都不相等的等差数列,满足,且,则数列项中的最大值为_.三、解答题19如图,已知椭圆C: +y2=1,点B坐标为(0,1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上()求直线AB的方程()若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OMON为定值20等差数列an的前n项和为Sna3=2,S8=22(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn21已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:22cos4sin+6=0(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求C1MN的面积 22(本小题12分)设是等差数列,是各项都为正数的等比数列,且,.111(1)求,的通项公式;(2)求数列的前项和.23设an是公比小于4的等比数列,Sn为数列an的前n项和已知a1=1,且a1+3,3a2,a3+4构成等差数列(1)求数列an的通项公式;(2)令bn=lna3n+1,n=12求数列bn的前n项和Tn24求函数f(x)=4x+4在0,3上的最大值与最小值耒阳市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B2 【答案】C【解析】考点:余弦定理3 【答案】 D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0a4,0b4,P(x,y,4),0x4,0y4,则F(0,b,4),E(4,a,0),=(x,by,0),点P到点F的距离等于点P到平面ABB1A1的距离,当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),|PE|min=2故选:D【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识4 【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A5 【答案】B【解析】,故或,解得或或,又根据集合元素的互异性,所以或。6 【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah2rh当a=2r时截面面积最大,即轴截面面积最大,故A正确对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,截面三角形SAB的高为,截面面积S=故截面的最大面积为故B错误对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题7 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况8 【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则r2=4R2=,r=球心到圆锥底面的距离为=圆锥的高分别为和两个圆锥的体积比为: =1:3故选:D9 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.10【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大11【答案】B【解析】试题分析:设从青年人抽取的人数为,故选B考点:分层抽样12【答案】D【解析】解:f(x+2)为奇函数,f(x+2)=f(x+2),f(x)是偶函数,f(x+2)=f(x+2)=f(x2),即f(x+4)=f(x),则f(x+4)=f(x),f(x+8)=f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由f(x+4)=f(x),得当x=2时,f(2)=f(2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键二、填空题13【答案】300 【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15=300故答案为:300【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目14【答案】【解析】解析:f(x)是偶函数,f(x)f(x)恒成立,即(x)(exaex)x(exaex),a(exex)(exex),a1.答案:115【答案】,.【解析】,又,的定义域为,将的图象如下图画出,从而可知其最小正周期为,故填:,.16【答案】 菱形;矩形 【解析】解:如图所示:EFAC,GHAC且EF=AC,GH=AC四边形EFGH是平行四边形又AC=BDEF=FG四边形EFGH是菱形由知四边形EFGH是平行四边形又ACBD,EFFG四边形EFGH是矩形故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题17【答案】 【解析】解:a是甲抛掷一枚骰子得到的点数,试验发生包含的事件数6,方程x2+ax+a=0 有两个不等实根,a24a0,解得a4,a是正整数,a=5,6,即满足条件的事件有2种结果,所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键18【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.三、解答题19【答案】 【解析】()解:设点E(t,t),B(0,1),A(2t,2t+1),点A在椭圆C上,整理得:6t2+4t=0,解得t=或t=0(舍去),E(,),A(,),直线AB的方程为:x+2y+2=0;()证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:xM=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:xN=,OMON=|xM|xN|=2|=|=|=|=【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题20【答案】 【解析】解:(1)设等差数列an的公差为d,a3=2,S8=22,解得,an的通项公式为an=1+(n1)=(2)bn=,Tn=2+=2=21【答案】 【解析】解:(1),将其代入C1得:,圆C1的直角坐标方程为:由直线l1:(t为参数),消去参数可得:y=x,可得(R)直线l1的极坐标方程为:(R)(2),可得,【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题 22【答案】(1);(2).【解析】(2),6分,.8分-得,10分所以.12分考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设的公差为,的公比为,根据等差数列和等比数列的通项公式,联立方程求得和,进而可得,的通项公式;(2)数列的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和.23【答案】 【解析】解:(1)设等比数列an的公比为q4,a1+3,3a2,a3+4构成等差数列23a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 嵌入式系统的功耗管理制度与优化
- 农田水利建设对农业产量的影响
- 水利工程水资源开发方案
- 轻薄夏季服装穿搭手册
- 安全管理规程的建模规划
- 农村社会事务管理与农民生活改善
- 物业管理的人力资源管理
- 家政服务合同细节约定及责任划分说明
- 快乐时光的情感表达抒情作文4篇范文
- 税务筹划及报表处理高效工具集
- 蜂鸟众包培训知识课件
- 新转型九年一贯制学校三年发展规划(2025年-2028年)
- 维护秩序靠规则(课件) 2025-2026学年八年级道德与法治上册(统编版2024)
- 期神丁鹏期货交易课件
- 反走私课件教学课件
- 大货车闯红灯安全培训课件
- 变电站SVG培训课件
- 2025秋教科版(2024)科学三年级上册教学设计(附目录)
- 2025年人教版三年级数学上册全册教案
- (2025秋新版)苏教版科学三年级上册全册教案
- 《中国人首次进入自己的空间站》导学案 部编语文八年级上册
评论
0/150
提交评论