




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
灞桥区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若关于x的方程x3x2x+a=0(aR)有三个实根x1,x2,x3,且满足x1x2x3,则a的取值范围为( )AaBa1Ca1Da12 ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为( )A. B.C. D. 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力3 命题:“xR,x2x+20”的否定是( )AxR,x2x+20BxR,x2x+20CxR,x2x+20DxR,x2x+204 已知直线:过椭圆的上顶点和左焦点,且被圆截得的弦长为,若,则椭圆离心率的取值范围是( )(A) ( B ) (C) (D) 5 定义某种运算S=ab,运算原理如图所示,则式子+的值为( )A4B8C10D136 若关于的不等式的解集为或,则的取值为( )A B C D7 (m+1)x2(m1)x+3(m1)0对一切实数x恒成立,则实数m的取值范围是( )A(1,+)B(,1)CD8 如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )ABCD9 设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或810若动点A,B分别在直线l1:x+y7=0和l2:x+y5=0上移动,则AB的中点M到原点的距离的最小值为( )A3B2C3D411在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD12已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A B C D二、填空题13已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 14已知f(x)x(exaex)为偶函数,则a_15直线l:(t为参数)与圆C:(为参数)相交所得的弦长的取值范围是16对任意实数x,不等式ax22ax40恒成立,则实数a的取值范围是17在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=18已知集合,则AB 三、解答题19已知函数f(x)=lnx的反函数为g(x)()若直线l:y=k1x是函数y=f(x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:lm;()设a,bR,且ab,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由20某中学为了普及法律知识,举行了一次法律知识竞赛活动下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分)已知男、女生成绩的平均值相同(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率21(本小题满分12分)已知椭圆的离心率为,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的动点,且的最小值为-2.(1)求椭圆的标准方程;(2)若过左焦点的直线交椭圆于两点,求的取值范围.22一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺陷的零件数y(件)11985(1)画出散点图; (2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=, =x23已知z是复数,若z+2i为实数(i为虚数单位),且z4为纯虚数(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围24已知椭圆C1: +x2=1(a1)与抛物线C:x2=4y有相同焦点F1()求椭圆C1的标准方程;()已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当OBC面积最大时,求直线l的方程灞桥区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由x3x2x+a=0得a=x3x2x,设f(x)=x3x2x,则函数的导数f(x)=3x22x1,由f(x)0得x1或x,此时函数单调递增,由f(x)0得x1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=111=1,在x=时,函数取得极大值f()=()3()2()=,要使方程x3x2x+a=0(aR)有三个实根x1,x2,x3,则1a,即a1,故选:B【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键2 【答案】D 【解析】,即为直角三角形,则,.所以内切圆半径,外接圆半径.由题意,得,整理,得,双曲线的离心率,故选D.3 【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“xR,x2x+20”的否定是xR,x2x+20故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查4 【答案】 B 【解析】依题意,设圆心到直线的距离为,则解得。又因为,所以解得。于是,所以解得故选B5 【答案】 C【解析】解:模拟执行程序,可得,当ab时,则输出a(b+1),反之,则输出b(a+1),2tan=2,lg=1,(2tan)lg=(2tan)(lg+1)=2(1+1)=0,lne=1,()1=5,lne()1=()1(lne+1)=5(1+1)=10,+=0+10=10故选:C6 【答案】D【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程,解得,其对应的根分别为,所以,故选D.考点:不等式与方程的关系.7 【答案】C【解析】解:不等式(m+1)x2(m1)x+3(m1)0对一切xR恒成立,即(m+1)x2(m1)x+3(m1)0对一切xR恒成立若m+1=0,显然不成立若m+10,则 解得a故选C【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需8 【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;所求的概率为=故选D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单9 【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D10【答案】A【解析】解:l1:x+y7=0和l2:x+y5=0是平行直线,可判断:过原点且与直线垂直时,中的M到原点的距离的最小值直线l1:x+y7=0和l2:x+y5=0,两直线的距离为=,AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题11【答案】D【解析】解:双曲线(a0,b0)的渐近线方程为y=x联立方程组,解得A(,),B(,),设直线x=与x轴交于点DF为双曲线的右焦点,F(C,0)ABF为钝角三角形,且AF=BF,AFB90,AFD45,即DFDAc,ba,c2a2a2c22a2,e22,e又e1离心率的取值范围是1e故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式12【答案】C【解析】1111试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.二、填空题13【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,z=log4(2x+y+4)最大是,故答案为:【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题14【答案】【解析】解析:f(x)是偶函数,f(x)f(x)恒成立,即(x)(exaex)x(exaex),a(exex)(exex),a1.答案:115【答案】4,16 【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanx+1;圆C的参数方程(为参数),化为普通方程是(x2)2+(y1)2=64;画出图形,如图所示;直线过定点(0,1),直线被圆截得的弦长的最大值是2r=16,最小值是2=2=2=4弦长的取值范围是4,16故答案为:4,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题16【答案】(4,0 【解析】解:当a=0时,不等式等价为40,满足条件;当a0时,要使不等式ax22ax40恒成立,则满足,即,解得4a0,综上:a的取值范围是(4,0故答案为:(4,0【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论17【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题18【答案】11,3【解析】试题分析:AB11,3考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍三、解答题19【答案】 【解析】解:()函数f(x)=lnx的反函数为g(x)g(x)=ex,f(x)=ln(x),则函数的导数g(x)=ex,f(x)=,(x0),设直线m与g(x)相切与点(x1,),则切线斜率k2=,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(x2),则切线斜率k1=,则x2=e,k1=,故k2k1=e=1,则lm()不妨设ab,PR=g()=0,PR,PQ=g()=,令(x)=2xex+ex,则(x)=2exex0,则(x)在(0,+)上为减函数,故(x)(0)=0,取x=,则ab+0,PQ,=1令t(x)=1+,则t(x)=0,则t(x)在(0,+)上单调递增,故t(x)t(0)=0,取x=ab,则1+0,RQ,综上,PQR,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大20【答案】() ;() 【解析】试题分析: ()由平均值相等很容易求得的值;()成绩高于分的学生共五人,写出基本事件共个,可得恰有两名为女生的基本事件的个数,则其比值为所求其中恰有2名学生是女生的结果是,共3种情况所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率1考点:平均数;古典概型【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好21【答案】(1);(2).【解析】试题解析:(1)根据题意知,即,则,设,当时,则.椭圆的方程为.1111设,则,.,.综上知,.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.22【答案】 【解析】【专题】应用题;概率与统计【分析】(1)利用所给的数据画出散点图;(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式【解答】解:(1)画出散点图,如图所示:(2)=12.5, =8.25,b=0.7286,a=0.8575回归直线方程为:y=0.7286x0.8575;(3)要使y10,则0.728 6x0.857510,x14.901 9故机器的转速应控制在14.9转/秒以下【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目23【答案】 【解析】解:(1)设z=x+yi(x,yR)由z+2i=x+(y+2)i为实数,得y+2=0,即y=2由z4=(x4)+yi为纯虚数,得x=4z=42i(2)(z+mi)2=(m2+4m+12)+8(m2)i,根据条件,可知 解得2m2,实数m的取值范围是(2,2)【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题24【答案】 【解析】解:()抛物线x2=4y的焦点为F1(0,1),c=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- xx局疫情防控管理制度
- 服务商备件库管理制度
- 上海科技馆设备管理制度
- 施工物资储存管理制度
- 学校app软件管理制度
- 公司员工信息化管理制度
- 墨江县户口迁入管理制度
- 华为中小型企业管理制度
- 军士任职培训队管理制度
- 办公区设施设备管理制度
- 2024-2025学年七年级语文上学期期中模拟卷(含答案)
- 备品备件保障方案
- 幼儿教师专业成长支持体系构建研究
- 举一反三系列高考高中数学同步及复习资料人教A版必修1专题5.15 三角函数的图象与性质的综合应用大题专项训练(30道)(含答案及解析)
- 广告设计师三级理论知识鉴定要素细目表
- 会诊制度培训课件
- CSTM-窗口晶体 紫外级氟化钙晶体编制说明
- 人教版数学三年级下册期末考试试卷及答案
- 2024年涉密人员考试试题库保密基本知识试题附答案(考试直接用)
- 遗传学智慧树知到答案2024年吉林师范大学
- 2023-2024学年八年级第二学期期末数学考试试卷附答案
评论
0/150
提交评论