




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北辰区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合A=x|1x3,B=x|0xa,若AB,则实数a的范围是( )A3,+)B(3,+)C,3D,3)2 一个几何体的三视图如图所示,则该几何体的体积是( ) A64 B72 C80 D112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.3 设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D104 与命题“若xA,则yA”等价的命题是( )A若xA,则yAB若yA,则xAC若xA,则yAD若yA,则xA5 在正方体ABCDA1B1C1D1中,点E为底面ABCD上的动点若三棱锥BD1EC的表面积最大,则E点位于( )A点A处B线段AD的中点处C线段AB的中点处D点D处6 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A64 B32 C D7 函数y=2x2e|x|在2,2的图象大致为( )ABCD8 设集合( )ABCD 9 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( ) A20+2B20+3C24+3D24+310若关于的不等式的解集为,则参数的取值范围为( )A B C D【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.11在ABC中,若2cosCsinA=sinB,则ABC的形状是( )A直角三角形B等边三角形C等腰直角三角形D等腰三角形12等比数列an满足a1=3,a1+a3+a5=21,则a2a6=( )A6B9C36D72二、填空题13设有一组圆Ck:(xk+1)2+(y3k)2=2k4(kN*)下列四个命题:存在一条定直线与所有的圆均相切;存在一条定直线与所有的圆均相交;存在一条定直线与所有的圆均不相交;所有的圆均不经过原点其中真命题的代号是(写出所有真命题的代号)14已知,不等式恒成立,则的取值范围为_.15过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为16函数f(x)=ax+4的图象恒过定点P,则P点坐标是17设x,y满足约束条件,则目标函数z=2x3y的最小值是18台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75方向上的C点,这时观测站与台风中心的距离AC等于km三、解答题19(本题满分15分)正项数列满足,(1)证明:对任意的,;(2)记数列的前项和为,证明:对任意的,【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.20(本小题满分12分)在中,内角的对边为,已知.(I)求角的值;(II)若,且的面积取值范围为,求的取值范围【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力21如图,已知椭圆C: +y2=1,点B坐标为(0,1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上()求直线AB的方程()若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OMON为定值22(本题12分)如图,是斜边上一点,.(1)若,求;(2)若,求角.23 (本题满分12分)在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.(1)求证:;(2)若是的中点,求异面直线与所成角的余弦值;(3)若,求二面角的余弦值.24已知p:“直线x+ym=0与圆(x1)2+y2=1相交”;q:“方程x2x+m4=0的两根异号”若pq为真,p为真,求实数m的取值范围北辰区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:集合A=x|1x3,B=x|0xa,若AB,则a3,故选:B【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题2 【答案】C.【解析】3 【答案】B【解析】本题考查了对数的计算、列举思想a时,不符;a0时,ylog2x过点(,1),(1,0),此时b0,b1符合;a时,ylog2(x)过点(0,1),(,0),此时b0,b1符合;a1时,ylog2(x1)过点(,1),(0,0),(1,1),此时b1,b1符合;共6个4 【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可与命题“若xA,则yA”等价的命题是若yA,则xA故选D5 【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥BD1EC,无论E在底面ABCD上的何位置,面BCD1 的面积为定值,要使三棱锥BD1EC的表面积最大,则侧面BCE、CAD1、BAD1 的面积和最大,而当E与A重合时,三侧面的面积均最大,E点位于点A处时,三棱锥BD1EC的表面积最大故选:A【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题6 【答案】B【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:,故选B. 考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.7 【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D8 【答案】B【解析】解:集合A中的不等式,当x0时,解得:x;当x0时,解得:x,集合B中的解集为x,则AB=(,+)故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键9 【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=22+=4+,底面周长C=23+=6+,高为2,故柱体的侧面积为:(6+)2=12+2,故柱体的全面积为:12+2+2(4+)=20+3,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键10【答案】A 11【答案】D【解析】解:A+B+C=180,sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,sinCcosAsinAcosC=0,即sin(CA)=0,A=C 即为等腰三角形故选:D【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础12【答案】D【解析】解:设等比数列an的公比为q,a1=3,a1+a3+a5=21,3(1+q2+q4)=21,解得q2=2则a2a6=9q6=72故选:D二、填空题13【答案】 【解析】解:根据题意得:圆心(k1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项正确;考虑两圆的位置关系,圆k:圆心(k1,3k),半径为k2,圆k+1:圆心(k1+1,3(k+1),即(k,3k+3),半径为(k+1)2,两圆的圆心距d=,两圆的半径之差Rr=(k+1)2k2=2k+,任取k=1或2时,(Rrd),Ck含于Ck+1之中,选项错误;若k取无穷大,则可以认为所有直线都与圆相交,选项错误;将(0,0)带入圆的方程,则有(k+1)2+9k2=2k4,即10k22k+1=2k4(kN*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项正确则真命题的代号是故答案为:【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题14【答案】【解析】试题分析:把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可,设关于的函数对任意的,当时,即,解得;当时,即,解得,的取值范围是;故答案为:考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.15【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题16【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题17【答案】6 【解析】解:由约束条件,得可行域如图,使目标函数z=2x3y取得最小值的最优解为A(3,4),目标函数z=2x3y的最小值为z=2334=6故答案为:618【答案】25 【解析】解:由题意,ABC=135,A=7545=30,BC=25km,由正弦定理可得AC=25km,故答案为:25【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键三、解答题19【答案】(1)详见解析;(2)详见解析. 20【答案】【解析】(I),因为,所以又是三角形的内角,.21【答案】 【解析】()解:设点E(t,t),B(0,1),A(2t,2t+1),点A在椭圆C上,整理得:6t2+4t=0,解得t=或t=0(舍去),E(,),A(,),直线AB的方程为:x+2y+2=0;()证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:xM=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:xN=,OMON=|xM|xN|=2|=|=|=|=【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题22【答案】(1);(2).【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理.当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.23【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为平面,所以平面的一个法向量.由知为的三等分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年罕见病药品集中采购合作协议
- 2025年专业车队租赁保养及维修服务协议
- 2025年金融资产证券化项目托管服务合作协议
- 2025医疗事故责任追究与全面赔偿援助合同
- 2025年高端压路机租赁服务及道路排水管道施工一体化合同
- 2025年高新技术企业知识产权转让代理服务合同
- 2025年金融科技产品创新与反垄断风险防范合同
- 2025年铅酸蓄电池安全评估与认证服务及优化方案合同
- 2025高端医疗设备采购项目投资风险评估及市场分析合同
- 2025年绿色食品企业食品安全管理体系建立合同
- 中学升旗管理制度
- 专业公路工程知识考察试题及答案
- 陕西西安铁一中学2025届英语八下期末检测试题含答案
- 2025上半年高级软件水平考试《系统分析师(案例分析)》真题及解析
- 江西国泰集团股份有限公司考试真题2024
- 《电解质失衡课件讲解》课件
- 蜘蛛人作业培训
- 施工照片拍摄培训课件
- 网络安全运维培训内容
- 广西桉树造林技术改进及病虫害防治措施深入研究
- 经皮肾术后护理试题及答案
评论
0/150
提交评论