




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷略阳县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若函数f(x)=3|x1|+m的图象与x轴没有交点,则实数m的取值范围是( )Am0或m1Bm0或m1Cm1或m0Dm1或m02 已知点P(1,),则它的极坐标是( )ABCD3 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行4 若函数f(x)=kaxax,(a0,a1)在(,+)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是( )ABCD5 已知函数f(x)=2x,则f(x)=( )A2xB2xln2C2x+ln2D6 若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是( )Af(x)为奇函数Bf(x)为偶函数Cf(x)+1为奇函数Df(x)+1为偶函数7 已知点M的球坐标为(1,),则它的直角坐标为( )A(1,)B(,)C(,)D(,)8 双曲线=1(mZ)的离心率为( )AB2CD39 在平行四边形ABCD中,AC为一条对角线, =(2,4),=(1,3),则等于( )A(2,4)B(3,5)C(3,5)D(2,4)10设m,n是正整数,多项式(12x)m+(15x)n中含x一次项的系数为16,则含x2项的系数是( )A13B6C79D3711已知正方体ABCDA1B1C1D1中,点E为上底面A1C1的中心,若+,则x、y的值分别为( )Ax=1,y=1Bx=1,y=Cx=,y=Dx=,y=112设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM二、填空题13i是虚数单位,化简: =14一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是15已知圆,则其圆心坐标是_,的取值范围是_【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.16设p:实数x满足不等式x24ax+3a20(a0),q:实数x满足不等式x2x60,已知p是q的必要非充分条件,则实数a的取值范围是17已知函数f(x)=cosxsinx,给出下列四个结论:若f(x1)=f(x2),则x1=x2;f(x)的最小正周期是2;f(x)在区间,上是增函数;f(x)的图象关于直线x=对称其中正确的结论是18曲线y=x+ex在点A(0,1)处的切线方程是三、解答题19(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.20已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值21某港口的水深y(米)是时间t(0t24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asint+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22(本小题满分12分)求下列函数的定义域:(1);(2).23某城市100户居民的月平均用电量(单位:度),以,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数111124已知矩阵M所对应的线性变换把点A(x,y)变成点A(13,5),试求M的逆矩阵及点A的坐标 略阳县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:函数f(x)=3|x1|+m的图象与x轴没有交点,m=3|x1|无解,|x1|0,03|x1|1,m0或m1,解得m0或m1故选:A2 【答案】C【解析】解:点P的直角坐标为,=2再由1=cos, =sin,可得,结合所给的选项,可取=,即点P的极坐标为 (2,),故选 C【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题3 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况4 【答案】C【解析】解:函数f(x)=kaxax,(a0,a1)在(,+)上是奇函数则f(x)+f(x)=0即(k1)(axax)=0则k=1又函数f(x)=kaxax,(a0,a1)在(,+)上是增函数则a1则g(x)=loga(x+k)=loga(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(x)+f(x)=0,若函数在其定义域为为偶函数,则f(x)f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数减函数=增函数也是解决本题的关键5 【答案】B【解析】解:f(x)=2x,则f(x)=2xln2,故选:B【点评】本题考查了导数运算法则,属于基础题6 【答案】C【解析】解:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,令x1=x2=0,得f(0)=1令x1=x,x2=x,得f(0)=f(x)+f(x)+1,f(x)+1=f(x)1=f(x)+1,f(x)+1为奇函数故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答7 【答案】B【解析】解:设点M的直角坐标为(x,y,z),点M的球坐标为(1,),x=sincos=,y=sinsin=,z=cos=M的直角坐标为(,)故选:B【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,来确定,其中r为原点O与点P间的距离,为有向线段OP与z轴正向的夹角,为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影这样的三个数r,叫做点P的球面坐标,显然,这里r,的变化范围为r0,+),0,2,0,8 【答案】B【解析】解:由题意,m240且m0,mZ,m=1双曲线的方程是y2x2=1a2=1,b2=3,c2=a2+b2=4a=1,c=2,离心率为e=2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b29 【答案】C【解析】解:,=(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力10【答案】 D【解析】二项式系数的性质【专题】二项式定理【分析】由含x一次项的系数为16利用二项展开式的通项公式求得2m+5n=16 ,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数【解答】解:由于多项式(12x)m+(15x)n中含x一次项的系数为(2)+(5)=16,可得2m+5n=16 再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(2)2+(5)2=37,故选:D【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题11【答案】C【解析】解:如图,+()故选C12【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B二、填空题13【答案】1+2i 【解析】解: =故答案为:1+2i14【答案】 【解析】解:由题意可得,2a,2b,2c成等差数列2b=a+c4b2=a2+2ac+c2b2=a2c2联立可得,5c2+2ac3a2=05e2+2e3=00e1故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题15【答案】,. 【解析】将圆的一般方程化为标准方程,圆心坐标,而,的范围是,故填:,.16【答案】 【解析】解:x24ax+3a20(a0),(xa)(x3a)0,则3axa,(a0),由x2x60得2x3,p是q的必要非充分条件,q是p的必要非充分条件,即,即a0,故答案为:17【答案】 【解析】解:函数f(x)=cosxsinx=sin2x,对于,当f(x1)=f(x2)时,sin2x1=sin2x2=sin(2x2)2x1=2x2+2k,即x1+x2=k,kZ,故错误;对于,由函数f(x)=sin2x知最小正周期T=,故错误;对于,令+22x+2k,kZ得+kx+k,kZ当k=0时,x,f(x)是增函数,故正确;对于,将x=代入函数f(x)得,f()=为最小值,故f(x)的图象关于直线x=对称,正确综上,正确的命题是故答案为:18【答案】2xy+1=0 【解析】解:由题意得,y=(x+ex)=1+ex,点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y1=2x,即2xy+1=0,故答案为:2xy+1=0【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题三、解答题19【答案】(1).(2)的最大值为,最小值为.【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数得曲线的普通方程为 (3分)(2)由题意知,直线的参数方程为(为参数),将代入得 (6分)设对应的参数分别为,则.的最大值为,最小值为. (10分)考点:参数方程化成普通方程20【答案】 【解析】解:(1)当m=3时,由x22x301x3,由11x5,AB=x|1x3;(2)若AB=x|1x4,A=(1,5),4是方程x22xm=0的一个根,m=8,此时B=(2,4),满足AB=(1,4)m=821【答案】 【解析】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,=10,且相隔9小时达到一次最大值说明周期为12,因此,故(0t24)(2)要想船舶安全,必须深度f(t)11.5,即,解得:12k+1t5+12k kZ又0t24当k=0时,1t5;当k=1时,13t17;故船舶安全进港的时间段为(1:005:00),(13:0017:00)【点评】本题主要考查三角函数知识的应用问题解决本题的关键在于求出函数解析式求三角函数的解析式注意由题中条件求出周期,最大最小值等22【答案】(1);(2)【解析】考点:函数的定义域. 1【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 紧急医疗救护培训与演练系统行业跨境出海项目商业计划书
- 老爷车文化旅游线路行业跨境出海项目商业计划书
- 船舶拆船创新创业项目商业计划书
- 羊胎素面霜抗衰老行业跨境出海项目商业计划书
- 2025年气候变化对农业生产的影响与适应策略
- 2025年气候变化对全球冰川融化影响
- 试样的采集教学设计中职专业课-分析化学-分析检验技术-生物与化工大类
- 2025年燃煤发电机组项目申请报告范文
- 9 学穿衣服教学设计-2025-2026学年小学劳动一年级下册人教版生活适应(特殊教育)
- 演唱 青年友谊圆舞曲教学设计初中音乐七年级上册(2024)人音版(2024 主编:赵季平杜永寿)
- 2025至2030年中国民间美术文化遗产行业市场运营态势及发展趋势研究报告
- 巡察整改培训课件
- T/CCIAS 009-2023减盐酱油
- 光伏建筑一体化系统 (BIPV) 测试与认证
- 进展期胃癌外科规范化治疗
- 艺术教育自考题库及答案
- 预防医学专业简介
- 下肢深静脉血栓形成介入治疗护理实践指南(2025版)解读课件
- 《系统柜介绍与使用》课件
- 2023《广东省建设工程消防设计审查疑难问题解析》
- 无人机理论知识培训课件
评论
0/150
提交评论