




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷印江土家族苗族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知函数f(x)=2ax33x2+1,若 f(x)存在唯一的零点x0,且x00,则a的取值范围是( )A(1,+)B(0,1)C(1,0)D(,1)2 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的可以是( )Ai4?Bi5?Ci6?Di7?3 已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD134 若不等式1ab2,2a+b4,则4a2b的取值范围是( )A5,10B(5,10)C3,12D(3,12)5 方程(x24)2+(y24)2=0表示的图形是( )A两个点B四个点C两条直线D四条直线6 以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )ABCD7 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为()A B C D8 在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D29 在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2=bc,sinC=2sinB,则A=( )A30B60C120D15010用秦九韶算法求多项式f(x)=x65x5+6x4+x2+0.3x+2,当x=2时,v1的值为( )A1B7C7D511已知数列,则5是这个数列的( )A第12项B第13项C第14项D第25项12满足条件0,1A=0,1的所有集合A的个数是( )A1个B2个C3个D4个二、填空题13函数在点处切线的斜率为 14若函数y=f(x)的定义域是,2,则函数y=f(log2x)的定义域为15已知、分别是三内角的对应的三边,若,则的取值范围是_【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想16过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为17已知两个单位向量满足:,向量与的夹角为,则 .18设有一组圆Ck:(xk+1)2+(y3k)2=2k4(kN*)下列四个命题:存在一条定直线与所有的圆均相切;存在一条定直线与所有的圆均相交;存在一条定直线与所有的圆均不相交;所有的圆均不经过原点其中真命题的代号是(写出所有真命题的代号)三、解答题19ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2c2)=3ab()求cos2C和角B的值;()若ac=1,求ABC的面积20过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程21如图,在三棱柱ABCA1B1C1中,底面ABC是边长为2的等边三角形,D为AB中点(1)求证:BC1平面A1CD;(2)若四边形BCC1B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值22已知数列an是各项均为正数的等比数列,满足a3=8,a3a22a1=0()求数列an的通项公式()记bn=log2an,求数列anbn的前n项和Sn23已知函数f(x)=|2x1|+|2x+a|,g(x)=x+3(1)当a=2时,求不等式f(x)g(x)的解集;(2)设a,且当x,a时,f(x)g(x),求a的取值范围 24(本小题满分10分)选修45:不等式选讲已知函数(I)若,使得不等式成立,求实数的最小值;()在(I)的条件下,若正数满足,证明:.印江土家族苗族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:若a=0,则函数f(x)=3x2+1,有两个零点,不满足条件若a0,函数的f(x)的导数f(x)=6ax26x=6ax(x),若 f(x)存在唯一的零点x0,且x00,若a0,由f(x)0得x或x0,此时函数单调递增,由f(x)0得0x,此时函数单调递减,故函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若x00,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件若a0,由f(x)0得x0,此时函数递增,由f(x)0得x或x0,此时函数单调递减,即函数在x=0处取得极大值f(0)=10,在x=处取得极小值f(),若存在唯一的零点x0,且x00,则f()0,即2a()33()2+10,()21,即10,解得a1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键注意分类讨论2 【答案】 C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的可以是i6?故选:C【点评】本小题主要考查循环结构、数列等基础知识根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查3 【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关键是基础的计算题4 【答案】A【解析】解:令4a2b=x(ab)+y(a+b)即解得:x=3,y=1即4a2b=3(ab)+(a+b)1ab2,2a+b4,33(ab)65(ab)+3(a+b)10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a2b=x(ab)+y(a+b),并求出满足条件的x,y,是解答的关键5 【答案】B【解析】解:方程(x24)2+(y24)2=0则x24=0并且y24=0,即,解得:,得到4个点故选:B【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力6 【答案】D【解析】解:因为以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P=,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比7 【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B8 【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题9 【答案】A【解析】解:sinC=2sinB,c=2b,a2b2=bc,cosA=A是三角形的内角A=30故选A【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题10【答案】C【解析】解:f(x)=x65x5+6x4+x2+0.3x+2=(x5)x+6)x+0)x+2)x+0.3)x+2,v0=a6=1,v1=v0x+a5=1(2)5=7,故选C11【答案】B【解析】由题知,通项公式为,令得,故选B答案:B 12【答案】D【解析】解:由0,1A=0,1易知:集合A0,1而集合0,1的子集个数为22=4故选D【点评】本题考查两个集合并集时的包含关系,以及求n个元素的集合的子集个数为2n个这个知识点,为基础题二、填空题13【答案】【解析】试题分析:考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.14【答案】,4 【解析】解:由题意知log2x2,即log2log2xlog24,x4故答案为:,4【点评】本题考查函数的定义域及其求法,正确理解“函数y=f(x)的定义域是,2,得到log2x2”是关键,考查理解与运算能力,属于中档题15【答案】 【解析】16【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题17【答案】【解析】考点:向量的夹角【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义;二是坐标运算公式;三是利用数量积的几何意义(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简18【答案】 【解析】解:根据题意得:圆心(k1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项正确;考虑两圆的位置关系,圆k:圆心(k1,3k),半径为k2,圆k+1:圆心(k1+1,3(k+1),即(k,3k+3),半径为(k+1)2,两圆的圆心距d=,两圆的半径之差Rr=(k+1)2k2=2k+,任取k=1或2时,(Rrd),Ck含于Ck+1之中,选项错误;若k取无穷大,则可以认为所有直线都与圆相交,选项错误;将(0,0)带入圆的方程,则有(k+1)2+9k2=2k4,即10k22k+1=2k4(kN*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项正确则真命题的代号是故答案为:【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题三、解答题19【答案】 【解析】解:(I)由cosA=,0A,sinA=,5(a2+b2c2)=3ab,cosC=,0C,sinC=,cos2C=2cos2C1=,cosB=cos(A+C)=cosAcosC+sinAsinC=+=0B,B=(II)=,a=c,ac=1,a=,c=1,S=acsinB=1=【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识考查学生对基础知识的综合运用20【答案】 【解析】解:由题意可知过焦点的直线方程为y=x,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2抛物线的方程为y2=4x【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题21【答案】 【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,D为AB的中点,DOBC1,BC1平面A1CD,DO平面A1CD,BC1平面A1CD 解:底面ABC是边长为2等边三角形,D为AB的中点,四边形BCC1B1是正方形,且A1D=,CDAB,CD=,AD=1,AD2+AA12=A1D2,AA1AB,CDDA1,又DA1AB=D,CD平面ABB1A1,BB1平面ABB1A1,BB1CD,矩形BCC1B1,BB1BC,BCCD=CBB1平面ABC,底面ABC是等边三角形,三棱柱ABCA1B1C1是正三棱柱以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,2,),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为,则sin=直线A1D与平面CBB1C1所成角的正弦值为22【答案】 【解析】解:()设数列an的公比为q,由an0可得q0,且a3a22a1=0,化简得q2q2=0,解得q=2或q=1(舍),a3=a1q2=4a1=8,a1=2,数列an是以首项和公比均为2的等比数列,an=2n;()由(I)知bn=log2an=n,anbn=n2n,Sn=121+222+323+(n1)2n1+n2n,2Sn=122+223+(n2)2n1+(n1)2n+n2n+1,两式相减,得Sn=21+22+23+2n1+2nn2n+1,Sn=n2n+1,Sn=2+(n1)2n+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司安全目标管理制度
- 公司物流内部管理制度
- 2025企业视觉识别系统设计合同
- 河南省驻马店市2024-2025学年高二下册5月月考数学试卷附解析
- 河南省周口市2024~2025学年 高二下册阶段性测试(三)数学试卷附解析
- 河北省邢台市2024~2025学年 高三下册3月月考数学试卷附解析
- 安徽省2024-2025学年高二下册4月期中数学试卷附解析
- 行业标准制定与政策执行的挑战与对策-洞察阐释
- 2024年山西省文物局所属事业单位招聘真题
- 幼儿园保育工作相关表格与工作制度:餐饮具、食品、物品清洗消毒制度
- 加油站岗位标准化操作制度
- 专题04 《经典常谈》(期中热点)20题-2023-2024学年八年级语文下学期期中专题复习(深圳专用)(原卷版)
- 企业食堂聘用厨师合同范例
- 初三班级学生中考加油家长会课件
- 医疗科室应急预案专项考试试题及答案
- 国家开放大学《光伏电池原理与工艺》形考任务1-4参考答案
- 婴幼儿发展引导员(育婴员)职业技能竞赛理论考试题库(含答案)
- 2024年《中央经济工作会议》重要试题及答案
- 绿色建筑工程监理实施细则
- 燃气生产安全事故应急处置工作手册
- 《积极心理学(第3版)》 课件 第11章 宽容
评论
0/150
提交评论