




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷永登县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD2 在正方体ABCDA1B1C1D1中,点E,F分别是棱AB,BB1的中点,则异面直线EF和BC1所成的角是( )A60B45C90D1203 已知是球的球面上两点,为该球面上的动点,若三棱锥体积的最大值为,则球的体积为( )ABCD【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力4 已知平面=l,m是内不同于l的直线,那么下列命题中错误 的是()A若m,则mlB若ml,则mC若m,则mlD若ml,则m5 若a=ln2,b=5,c=xdx,则a,b,c的大小关系( )AabcBBbacCCbcaDcba6 下列函数在(0,+)上是增函数的是( )ABy=2x+5Cy=lnxDy=7 已知圆方程为,过点与圆相切的直线方程为( )A B C D8 已知偶函数f(x)满足当x0时,3f(x)2f()=,则f(2)等于( )ABCD9 定义在R上的奇函数f(x),满足,且在(0,+)上单调递减,则xf(x)0的解集为( )ABCD10设集合A=x|y=ln(x1),集合B=y|y=2x,则AB( )A(0,+)B(1,+)C(0,1)D(1,2)11i是虚数单位,计算i+i2+i3=( )A1B1CiDi12已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆被双曲线截得劣弧长为,则双曲线的离心率为( )A B C D二、填空题13已知函数,则_;的最小值为_14=15复数z=(i虚数单位)在复平面上对应的点到原点的距离为16观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为17已知奇函数f(x)的定义域为2,2,且在定义域上单调递减,则满足不等式f(1m)+f(12m)0的实数m的取值范围是18某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为升三、解答题19在锐角ABC中,角A、B、C的对边分别为a、b、c,且()求角B的大小;()若b=6,a+c=8,求ABC的面积20已知函数且f(1)=2(1)求实数k的值及函数的定义域;(2)判断函数在(1,+)上的单调性,并用定义加以证明21双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线求双曲线C的方程22已知定义在区间(0,+)上的函数f(x)满足f()=f(x1)f(x2)(1)求f(1)的值;(2)若当x1时,有f(x)0求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=1,求f(x)在3,25上的最小值23已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b()求该椭圆的离心率;()已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于APQ,求该椭圆的方程24如图,已知五面体ABCDE,其中ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC()证明:ADBC()若AB=4,BC=2,且二面角ABDC所成角的正切值是2,试求该几何体ABCDE的体积永登县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D2 【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1)=(2,0,2),=(0,1,1),=,=60异面直线EF和BC1所成的角是60故选:A【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题3 【答案】D【解析】当平面平面时,三棱锥的体积最大,且此时为球的半径设球的半径为,则由题意,得,解得,所以球的体积为,故选D4 【答案】D【解析】【分析】由题设条件,平面=l,m是内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D5 【答案】C【解析】解: a=ln2lne即,b=5=,c=xdx=,a,b,c的大小关系为:bca故选:C【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题6 【答案】C【解析】解:对于A,函数y=在(,+)上是减函数,不满足题意;对于B,函数y=2x+5在(,+)上是减函数,不满足题意;对于C,函数y=lnx在(0,+)上是增函数,满足题意;对于D,函数y=在(0,+)上是减函数,不满足题意故选:C【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目7 【答案】A【解析】试题分析:圆心,设切线斜率为,则切线方程为,由,所以切线方程为,故选A.考点:直线与圆的位置关系8 【答案】D【解析】解:当x0时,3f(x)2f()=,3f()2f(x)=,3+2得:5f(x)=,故f(x)=,又函数f(x)为偶函数,故f(2)=f(2)=,故选:D【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x0时,函数f(x)的解析式,是解答的关键9 【答案】B【解析】解:函数f(x)是奇函数,在(0,+)上单调递减,且f ()=0,f ()=0,且在区间(,0)上单调递减,当x0,当x0时,f(x)0,此时xf(x)0当x0,当0x时,f(x)0,此时xf(x)0综上xf(x)0的解集为故选B10【答案】A【解析】解:集合A=x|y=ln(x1)=(1,+),集合B=y|y=2x=(0,+)则AB=(0,+)故选:A【点评】本题考查了集合的化简与运算问题,是基础题目11【答案】A【解析】解:由复数性质知:i2=1故i+i2+i3=i+(1)+(i)=1故选A【点评】本题考查复数幂的运算,是基础题12【答案】B 考点:双曲线的性质二、填空题13【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为: 14【答案】2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题15【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力16【答案】n+(n+1)+(n+2)+(3n2)=(2n1)2 【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49等号右边是12,32,52,72第n个应该是(2n1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+(3n2)=(2n1)2,故答案为:n+(n+1)+(n+2)+(3n2)=(2n1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题17【答案】, 【解析】解:函数奇函数f(x)的定义域为2,2,且在定义域上单调递减,不等式f(1m)+f(12m)0等价为f(1m)f(12m)=f(2m1),即,即,得m,故答案为:,【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键注意定义域的限制18【答案】8升 【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量486=8故答案是:8三、解答题19【答案】 【解析】解:()由2bsinA=a,以及正弦定理,得sinB=,又B为锐角,B=,()由余弦定理b2=a2+c22accosB,a2+c2ac=36,a+c=8,ac=,SABC=20【答案】 【解析】解:(1)f(1)=1+k=2;k=1,定义域为xR|x0;(2)为增函数;证明:设x1x21,则:=;x1x21;x1x20,;f(x1)f(x2);f(x)在(1,+)上为增函数21【答案】 【解析】解:设双曲线方程为(a0,b0)由椭圆+=1,求得两焦点为(2,0),(2,0),对于双曲线C:c=2又y=x为双曲线C的一条渐近线,= 解得a=1,b=,双曲线C的方程为22【答案】 【解析】解:(1)令x1=x20,代入得f(1)=f(x1)f(x1)=0,故f(1)=0(4分)(2)证明:任取x1,x2(0,+),且x1x2,则1,由于当x1时,f(x)0,所以f()0,即f(x1)f(x2)0,因此f(x1)f(x2),所以函数f(x)在区间(0,+)上是单调递减函数(8分)(3)因为f(x)在(0,+)上是单调递减函数,所以f(x)在3,25上的最小值为f(25)由f()=f(x1)f(x2)得,f(5)=f()=f(25)f(5),而f(5)=1,所以f(25)=2即f(x)在3,25上的最小值为2(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键23【答案】 【解析】解:()设F(c,0),M(c,y1),N(c,y2),则,得y1=,y2=,MN=|y1y2|=b,得a=2b,椭圆的离心率为: =()由条件,直线AP、AQ斜率必然存在,设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kxy+b=0,由于圆x2+y2=4内切于APQ,所以r=2=,得k=(b2),即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,yQ=yP=2,不妨设点Q在y轴左侧,可得xQ=xP=2,则=,解得b=3,则a=6,椭圆方程为:【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质24【答案】 【解析】()证明:AB是圆O的直径,ACBC,又DC平面ABCDCBC,又ACCD=C,BC平面ACD,又AD平面ACD,ADBC()解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示则C(0,0,0),B(2,0,0),D(0,0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校校服厂管理制度
- 学校配电间管理制度
- 学生对班级管理制度
- 学院各科室管理制度
- 安全品牌部管理制度
- 安息堂人员管理制度
- 安装充电桩管理制度
- 完善总资产管理制度
- 实验室收费管理制度
- 客户更衣区管理制度
- 健康中国战略下的体育产业发展方向
- GB/T 20424-2025重有色金属精矿产品中有害元素的限量规范
- 消防设施操作和维护保养规程
- 专利基础知识教学课件
- 人教部编版六年级下册语文【选择题】专项复习训练真题100题(附答案解析)
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 国家开放大学电大《国际私法》形考任务1-5题库及答案
- 《哪吒魔童降世》幼儿园小学少儿美术教育绘画课件创意教程教案
- 2024年中考模拟试卷生物(扬州卷)(考试版A3)
- 2022年全国森林、草原、湿地调查监测技术规程-附录
- 2025年春新北师大版数学一年级下册课件 综合实践 设计教室装饰图
评论
0/150
提交评论