




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金台区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知抛物线x2=2y的一条弦AB的中点坐标为(1,5),则这条弦AB所在的直线方程是( )Ay=x4By=2x3Cy=x6Dy=3x22 已知函数f(x)=是R上的增函数,则a的取值范围是( )A3a0B3a2Ca2Da03 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD4 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形5 已知某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),则以下结论正确的是( )A第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定6 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,m,则m;其中正确命题的序号是( )ABCD7 如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD8 已知函数f(x)是(,0)(0,+)上的奇函数,且当x0时,函数的部分图象如图所示,则不等式xf(x)0的解集是( )A(2,1)(1,2)B(2,1)(0,1)(2,+)C(,2)(1,0)(1,2)D(,2)(1,0)(0,1)(2,+)9 定义在R上的奇函数f(x),满足,且在(0,+)上单调递减,则xf(x)0的解集为( )ABCD10某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()AB8CD11两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为( )AakmB akmC2akmD akm12设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则PF1F2的面积等于( )ABC24D48二、填空题13设为锐角,若sin()=,则cos2=14等差数列中,公差,则使前项和取得最大值的自然数是_.15如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是16已知数列an中,a1=1,an+1=an+2n,则数列的通项an=17如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是已知样本中平均气温不大于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为18已知角终边上一点为P(1,2),则值等于三、解答题19如图,M、N是焦点为F的抛物线y2=2px(p0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围20如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y26x91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线21已知f(x)=x2(a+b)x+3a(1)若不等式f(x)0的解集为1,3,求实数a,b的值;(2)若b=3,求不等式f(x)0的解集22解关于x的不等式12x2axa2(aR)23设集合A=x|0xm3,B=x|x0或x3,分别求满足下列条件的实数m的取值范围(1)AB=;(2)AB=B24已知椭圆G: =1(ab0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(3,2)()求椭圆G的方程;()求PAB的面积金台区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=2,x12=2y1,x22=2y2两式相减可得,(x1+x2)(x1x2)=2(y1y2)直线AB的斜率k=1,弦AB所在的直线方程是y+5=x+1,即y=x4故选A,2 【答案】B【解析】解:函数是R上的增函数设g(x)=x2ax5(x1),h(x)=(x1)由分段函数的性质可知,函数g(x)=x2ax5在(,1单调递增,函数h(x)=在(1,+)单调递增,且g(1)h(1)解可得,3a2故选B3 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题4 【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah2rh当a=2r时截面面积最大,即轴截面面积最大,故A正确对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,截面三角形SAB的高为,截面面积S=故截面的最大面积为故B错误对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题5 【答案】C【解析】解:某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),1=90,1=86,2=93,2=79,第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础6 【答案】B【解析】解:由m、n是两条不同的直线,是三个不同的平面:在中:若m,n,则由直线与平面垂直得mn,故正确;在中:若,则,m,由直线垂直于平面的性质定理得m,故正确;在中:若m,n,则由直线与平面垂直的性质定理得mn,故正确;在中:若,m,则m或m,故错误故选:B7 【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题8 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf(x)0的解为:或解得:x(,2)(1,0)(0,1)(2,+)故选:D9 【答案】B【解析】解:函数f(x)是奇函数,在(0,+)上单调递减,且f ()=0,f ()=0,且在区间(,0)上单调递减,当x0,当x0时,f(x)0,此时xf(x)0当x0,当0x时,f(x)0,此时xf(x)0综上xf(x)0的解集为故选B10【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C11【答案】D【解析】解:根据题意,ABC中,ACB=1802040=120,AC=BC=akm,由余弦定理,得cos120=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题12【答案】C【解析】解:F1(5,0),F2(5,0),|F1F2|=10,3|PF1|=4|PF2|,设|PF2|=x,则,由双曲线的性质知,解得x=6|PF1|=8,|PF2|=6,F1PF2=90,PF1F2的面积=故选C【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用二、填空题13【答案】 【解析】解:为锐角,若sin()=,cos()=,sin= sin()+cos()=,cos2=12sin2=故答案为:【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题14【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以,所以,所以取得最大值时的自然数是或考点:等差数列的性质【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个易错点15【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题16【答案】2n1 【解析】解:a1=1,an+1=an+2n,a2a1=2,a3a2=22,anan1=2n1,相加得:ana1=2+22+23+2+2n1,an=2n1,故答案为:2n1,17【答案】9 【解析】解:平均气温低于22.5的频率,即最左边两个矩形面积之和为0.101+0.121=0.22,所以总城市数为110.22=50,平均气温不低于25.5的频率即为最右面矩形面积为0.181=0.18,所以平均气温不低于25.5的城市个数为500.18=9故答案为:918【答案】 【解析】解:角终边上一点为P(1,2),所以tan=2=故答案为:【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力三、解答题19【答案】 【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8p,|MF|=x1+,|NF|=x2+,|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12y22=4(x1x2)kMN=,直线MN的方程为yt=(x3),B的横坐标为x=3,直线MN代入y2=4x,可得y22ty+2t212=00可得0t212,x=3(3,3),点B横坐标的取值范围是(3,3)【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题20【答案】 【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2当动圆与圆O2相内切时,有|O2M|=10R将两式相加,得|O1M|+|O2M|=12|O1O2|,动圆圆心M(x,y)到点O1(3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(3,0)、O2(3,0),长轴长等于12的椭圆2c=6,2a=12,c=3,a=6b2=369=27圆心轨迹方程为,轨迹为椭圆(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2108=0,整理得所以圆心轨迹方程为,轨迹为椭圆【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键21【答案】 【解析】解:(1)函数f(x)=x2(a+b)x+3a,当不等式f(x)0的解集为1,3时,方程x2(a+b)x+3a=0的两根为1和3,由根与系数的关系得,解得a=1,b=3;(2)当b=3时,不等式f(x)0可化为x2(a+3)x+3a0,即(xa)(x3)0;当a3时,原不等式的解集为:x|x3或xa;当a3时,原不等式的解集为:x|xa或x3;当a=3时,原不等式的解集为:x|x3,xR【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目22【答案】 【解析】解:由12x2axa20(4x+a)(3xa)0(x+)(x)0,a0时,解集为x|x或x;a=0时,x20,解集为x|xR且x0;a0时,解集为x|x或x综上,当a0时,解集为x|x或x;当a=0时,x20,解集为x|xR且x0;当a0时,解集为x|x或x23【答案】 【解析】解:A=x|0xm3,A=x|mxm+3,(1)当AB=时;如图:则,解得m=0,(2)当AB=B时,则AB,由上图可得,m3或m+30,解得m3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 洗车店防水装修合同范本
- 管道拆迁补偿协议书范本
- 银行存钱协议书模板模板
- 私人钢结构厂房合同范本
- 篮球馆员工合同协议模板
- 父亲赠与女儿房产协议书
- 砍伐树木后要栽树协议书
- 船舶股份转让合同协议书
- 环卫特种车租赁合同范本
- 鹤壁买房定金协议书模板
- 第三章 科学研究与科学方法论
- 山东黄金归来庄矿业有限公司归来庄金矿矿山地质环境保护与土地复垦方案
- 项目融资计划书
- 针刺伤的预防及处理
- YY/T 0595-2020医疗器械质量管理体系YY/T 0287-2017 应用指南
- LS/T 1222-2020粮食干燥机系统工艺设计技术规范
- GB/T 26636-2011动植物油脂聚合甘油三酯的测定高效空间排阻色谱法(HPSEC)
- GB/T 19869.1-2005钢、镍及镍合金的焊接工艺评定试验
- GB/T 1796.4-2017轮胎气门嘴第4部分:压紧式无内胎气门嘴
- 中考语文非连续性文本阅读10篇专项练习及答案
- 上海高一数学教材电子版
评论
0/150
提交评论