连江县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
连江县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
连江县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
连江县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
连江县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷连江县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD2 已知变量x与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A =0.2x+3.3B =0.4x+1.5C =2x3.2D =2x+8.63 若实数x,y满足,则(x3)2+y2的最小值是( )AB8C20D24 若为等差数列,为其前项和,若,则成立的最大自然数为( )A11 B12 C13 D145 若ab0,则下列不等式不成立是( )ABC|a|b|Da2b26 对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值7 在复平面内,复数Z=+i2015对应的点位于( )A第四象限B第三象限C第二象限D第一象限8 “互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A10 B20 C30 D409 已知2a=3b=m,ab0且a,ab,b成等差数列,则m=( )ABCD610如图可能是下列哪个函数的图象( )Ay=2xx21By=Cy=(x22x)exDy=11设函数f(x)=,则f(1)=( )A0B1C2D312执行下面的程序框图,若输入,则输出的结果为( )A2015 B2016 C2116 D2048二、填空题13已知i是虚数单位,复数的模为14若函数f(x)=m在x=1处取得极值,则实数m的值是15已知函数f(x)=,若f(f(0)=4a,则实数a=16已知集合,则AB 17如图,在矩形中, , 在上,若, 则的长=_18已知正整数的3次幂有如下分解规律:;若的分解中最小的数为,则的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.三、解答题19如图,过抛物线C:x2=2py(p0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=4()p的值;()R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求MNT的面积的最小值20(1)求证:(2),若 21设函数f(x)=|xa|2|x1|()当a=3时,解不等式f(x)1;()若f(x)|2x5|0对任意的x1,2恒成立,求实数a的取值范围 22若函数f(x)=ax(a0,且a1)在1,2上的最大值比最小值大,求a的值23命题p:关于x的不等式x2+2ax+40对一切xR恒成立,q:函数f(x)=(32a)x是增函数若pq为真,pq为假求实数a的取值范围24设函数f(x)=lnxax+1()当a=1时,求曲线f(x)在x=1处的切线方程;()当a=时,求函数f(x)的单调区间;()在()的条件下,设函数g(x)=x22bx,若对于x11,2,x20,1,使f(x1)g(x2)成立,求实数b的取值范围连江县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题2 【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3, =2.7,代入A成立,代入D不成立故选:A3 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离dmin=,(x3)2+y2的最小值是:故选:A【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题4 【答案】A【解析】考点:得出数列的性质及前项和【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“,”判断前项和的符号问题是解答的关键 5 【答案】A【解析】解:ab0,ab0,|a|b|,a2b2,即,可知:B,C,D都正确,因此A不正确故选:A【点评】本题考查了不等式的基本性质,属于基础题6 【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B7 【答案】A【解析】解:复数Z=+i2015=i=i=复数对应点的坐标(),在第四象限故选:A【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查8 【答案】B【解析】试题分析:设从青年人抽取的人数为,故选B考点:分层抽样9 【答案】C【解析】解:2a=3b=m,a=log2m,b=log3m,a,ab,b成等差数列,2ab=a+b,ab0,+=2,=logm2, =logm3,logm2+logm3=logm6=2,解得m=故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用10【答案】 C【解析】解:A中,y=2xx21,当x趋向于时,函数y=2x的值趋向于0,y=x2+1的值趋向+,函数y=2xx21的值小于0,A中的函数不满足条件;B中,y=sinx是周期函数,函数y=的图象是以x轴为中心的波浪线,B中的函数不满足条件;C中,函数y=x22x=(x1)21,当x0或x2时,y0,当0x2时,y0;且y=ex0恒成立,y=(x22x)ex的图象在x趋向于时,y0,0x2时,y0,在x趋向于+时,y趋向于+;C中的函数满足条件;D中,y=的定义域是(0,1)(1,+),且在x(0,1)时,lnx0,y=0,D中函数不满足条件故选:C【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目11【答案】D【解析】解:f(x)=,f(1)=ff(7)=f(5)=3故选:D12【答案】D【解析】试题分析:由于,由程序框图可得对循环进行加运算,可以得到,从而可得,由于,则进行循环,最终可得输出结果为1考点:程序框图二、填空题13【答案】 【解析】解:复数=i1的模为=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,属于基础题14【答案】 2【解析】解:函数f(x)=m的导数为f(x)=mx2+2x,由函数f(x)=m在x=1处取得极值,即有f(1)=0,即m+2=0,解得m=2,即有f(x)=2x2+2x=2(x1)x,可得x=1处附近导数左正右负,为极大值点故答案为:2【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题15【答案】2 【解析】解:f(0)=2,f(f(0)=f(2)=4+2a=4a,所以a=2故答案为:216【答案】11,3【解析】试题分析:AB11,3考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍17【答案】【解析】在RtABC中,BC3,AB,所以BAC60.因为BEAC,AB,所以AE,在EAD中,EAD30,AD3,由余弦定理知,ED2AE2AD22AEADcosEAD923,故ED.18【答案】10【解析】的分解规律恰好为数列1,3,5,7,9,中若干连续项之和,为连续两项和,为接下来三项和,故的首个数为.的分解中最小的数为91,解得.三、解答题19【答案】 【解析】解:()由题意设MN:y=kx+,由,消去y得,x22pkxp2=0(*)由题设,x1,x2是方程(*)的两实根,故p=2;()设R(x3,y3),Q(x4,y4),T(0,t),T在RQ的垂直平分线上,|TR|=|TQ|得,又,即4(y3y4)=(y3+y42t)(y4y3)而y3y4,4=y3+y42t又y3+y4=1,故T(0,)因此,由()得,x1+x2=4k,x1x2=4,=因此,当k=0时,SMNT有最小值3【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题20【答案】 【解析】解:(1),an+1=f(an)=,则,是首项为1,公差为3的等差数列;(2)由(1)得, =3n2,bn的前n项和为,当n2时,bn=SnSn1=2n2n1=2n1,而b1=S1=1,也满足上式,则bn=2n1,=(3n2)2n1,=20+421+722+(3n2)2n1,则2Tn=21+422+723+(3n2)2n,得:Tn=1+321+322+323+32n1(3n2)2n,Tn=(3n5)2n+5 21【答案】 【解析】解:()f(x)1,即|x3|2x2|1x时,3x+2x21,x0,0x1;1x3时,3x2x+21,x,1x;x3时,x32x+21,x21x,无解,所以f(x)1解集为0,()当x1,2时,f(x)|2x5|0可化为|xa|3,a3xa+3,1a4 22【答案】 【解析】解:由题意可得:当a1时,函数f(x)在区间1,2上单调递增,f(2)f(1)=a2a=a,解得a=0(舍去),或a=当 0a1时,函数f(x)在区间1,2上单调递减,f(1)f(2)=aa2=,解得a=0(舍去),或a=故a的值为或【点评】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题23【答案】 【解析】解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+40对一切xR恒成立,函数g(x)的图象开口向上且与x轴没有交点,故=4a2160,2a2又函数f(x)=(32a)x是增函数,32a1,得a1又由于p或q为真,p且q为假,可知p和q一真一假(1)若p真q假,则,得1a2;(2)若p假q真,则,得a2综上可知,所求实数a的取值范围为1a2,或a224【答案】 【解析】解:函数f(x)的定义域为(0,+),(2分)()当a=1时,f(x)=lnxx1,f(1)=2,f(1)=0,f(x)在x=1处的切线方程为y=2(5分)()=(6分)令f(x)0,可得0x1,或x2;令f(x)0,可得1x2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+).()当时,由()可知函数f(x)在(1,2)上为增函数,函数f(x)在1,2上的最小值为f(1)=(9分)若对于x11,2,x20,1使f(x1)g(x2)成立,等价于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论