恩阳区二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
恩阳区二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
恩阳区二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
恩阳区二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
恩阳区二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷恩阳区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图所示,函数y=|2x2|的图象是( )ABCD2 直线的倾斜角为( )A B C D3 直线x2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )ABCD4 在如图55的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为( )120.51xyzA1B2C3D45 中,“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.6 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 7 已知双曲线=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )ABC3D58 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:小时)间的关系为(,均为正常数)如果前5个小时消除了的污染物,为了消除的污染物,则需要( )小时.A. B.C. D. 【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想. 9 设函数,则使得的自变量的取值范围为( )A BC D10已知角的终边经过点P(4,m),且sin=,则m等于( )A3B3CD311已知的终边过点,则等于( )A B C-5 D512若函数f(x)=2sin(x+)对任意x都有f(+x)=f(x),则f()=( )A2或0B0C2或0D2或2二、填空题13=14无论m为何值时,直线(2m+1)x+(m+1)y7m4=0恒过定点15函数在区间上递减,则实数的取值范围是 16如图是函数y=f(x)的导函数y=f(x)的图象,对此图象,有如下结论:在区间(2,1)内f(x)是增函数;在区间(1,3)内f(x)是减函数;在x=2时,f(x)取得极大值;在x=3时,f(x)取得极小值其中正确的是17下列关于圆锥曲线的命题:其中真命题的序号(写出所有真命题的序号)设A,B为两个定点,若|PA|PB|=2,则动点P的轨迹为双曲线;设A,B为两个定点,若动点P满足|PA|=10|PB|,且|AB|=6,则|PA|的最大值为8;方程2x25x+2=0的两根可分别作椭圆和双曲线的离心率;双曲线=1与椭圆有相同的焦点18已知直线5x+12y+m=0与圆x22x+y2=0相切,则m=三、解答题19(本小题满分10分)选修4-1:几何证明选讲如图,四边形外接于圆,是圆周角的角平分线,过点的切线与延长线交于点,交于点(1)求证:;(2)若是圆的直径,求长20已知点F(0,1),直线l1:y=1,直线l1l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H设点H的轨迹为曲线r()求曲线r的方程;()过点P作曲线r的两条切线,切点分别为C,D,()求证:直线CD过定点;()若P(1,1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由阿啊阿21在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨迹为曲线(1)求曲线的方程;111(2)过点作互相垂直的两条直线,与曲线交于,两点与曲线交于,两点,线段,的中点分别为,求证:直线过定点,并求出定点的坐标22已知定义域为R的函数是奇函数(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)023(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.24(1)直线l的方程为(a+1)x+y+2a=0(aR)若l在两坐标轴上的截距相等,求a的值;(2)已知A(2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程恩阳区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:y=|2x2|=,x=1时,y=0,x1时,y0故选B【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解2 【答案】C【解析】试题分析:由直线,可得直线的斜率为,即,故选C.1考点:直线的斜率与倾斜角.3 【答案】A【解析】直线x2y+2=0与坐标轴的交点为(2,0),(0,1),直线x2y+2=0经过椭圆的一个焦点和一个顶点;故故选A【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型4 【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,第三列的第3,4,5个数分别是,又因为每一横行成等差数列,第四行的第1、3个数分别为,所以y=,第5行的第1、3个数分别为,所以z=所以x+y+z=+=1故选:A【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力5 【答案】A.【解析】在中,故是充分必要条件,故选A.6 【答案】【解析】考点:直线方程7 【答案】A【解析】解:抛物线y2=12x的焦点坐标为(3,0)双曲线的右焦点与抛物线y2=12x的焦点重合4+b2=9b2=5双曲线的一条渐近线方程为,即双曲线的焦点到其渐近线的距离等于故选A【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键8 【答案】15 【解析】9 【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键.10【答案】B【解析】解:角的终边经过点P(4,m),且sin=,可得,(m0)解得m=3故选:B【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查11【答案】B【解析】考点:三角恒等变换12【答案】D【解析】解:由题意:函数f(x)=2sin(x+),f(+x)=f(x),可知函数的对称轴为x=,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值f()=2或2故选D二、填空题13【答案】2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题14【答案】(3,1) 【解析】解:由(2m+1)x+(m+1)y7m4=0,得即(2x+y7)m+(x+y4)=0,2x+y7=0,且x+y4=0,一次函数(2m+1)x+(m+1)y7m4=0的图象就和m无关,恒过一定点 由,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)15【答案】【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以.考点:二次函数图象与性质16【答案】 【解析】解:由 y=f(x)的图象可知,x(3,),f(x)0,函数为减函数;所以,在区间(2,1)内f(x)是增函数;不正确;在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f(x)=0,且在x=2的两侧导数值先正后负,在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,在x=3时,f(x)取得极小值不正确故答案为【点评】本题考察了函数的单调性,导数的应用,是一道基础题17【答案】 【解析】解:根据双曲线的定义可知,满足|PA|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以错误由|PA|=10|PB|,得|PA|+|PB|=10|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以正确方程2x25x+2=0的两个根为x=2或x=,所以方程2x25x+2=0的两根可分别作椭圆和双曲线的离心率,所以正确由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以错误故正确的命题为故答案为:【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质18【答案】8或18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案【解答】解:整理圆的方程为(x1)2+y2=1故圆的圆心为(1,0),半径为1直线与圆相切圆心到直线的距离为半径即=1,求得m=8或18故答案为:8或18三、解答题19【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力,则,在中,在中,所以20【答案】 【解析】满分(13分)解:()由题意可知,|HF|=|HP|,点H到点F(0,1)的距离与到直线l1:y=1的距离相等,(2分)点H的轨迹是以点F(0,1)为焦点,直线l1:y=1为准线的抛物线,(3分)点H的轨迹方程为x2=4y(4分)()()证明:设P(x1,1),切点C(xC,yC),D(xD,yD)由y=,得直线PC:y+1=xC(xx1),(5分)又PC过点C,yC=,yC+1=xC(xx1)=xCx1,yC+1=,即(6分)同理,直线CD的方程为,(7分)直线CD过定点(0,1)(8分)()由()()P(1,1)在直线CD的方程为,得x1=1,直线CD的方程为设l:y+1=k(x1),与方程联立,求得xQ=(9分)设A(xA,yA),B(xB,yB)联立y+1=k(x1)与x2=4y,得x24kx+4k+4=0,由根与系数的关系,得xA+xB=4kxAxB=4k+4(10分)xQ1,xA1,xB1同号,+=|PQ|=(11分)=,+为定值,定值为2(13分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力21【答案】() ;()证明见解析;【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,则直线:,由得,考点:曲线的轨迹方程;直线与抛物线的位置关系【易错点睛】导数法解决函数的单调性问题:(1)当不含参数时,可通过解不等式直接得到单调递增(或递减)区间(2)已知函数的单调性,求参数的取值范围,应用条件恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是不恒等于的参数的范围22【答案】 【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;经检验,符合题意;(2)由(1)知,f(x)=+;由y=2x的单调性可推知f(x)在R上为减函数; (3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)0等价于f(1+|x|)f(x),即f(1+|x|)f(x); 又因f(x)是R上的减函数,由上式推得1+|x|x,解得xR23【答案】(1).(2)的最大值为,最小值为.【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数得曲线的普通方程为 (3分)(2)由题意知,直线的参数方程为(为参数),将代入得 (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论