




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
定州市高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 复数是虚数单位)的虚部为( )A B C D【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力2 下列判断正确的是( )A不是棱柱B是圆台C是棱锥D是棱台3 已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD4 已知抛物线x2=2y的一条弦AB的中点坐标为(1,5),则这条弦AB所在的直线方程是( )Ay=x4By=2x3Cy=x6Dy=3x25 ABC的三内角A,B,C所对边长分别是a,b,c,设向量,若,则角B的大小为( )ABCD6 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,m,则m;其中正确命题的序号是( )ABCD7 设D为ABC所在平面内一点,则( )ABCD8 “ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9 在曲线y=x2上切线倾斜角为的点是( )A(0,0)B(2,4)C(,)D(,)10已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D11设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD12设集合M=x|x1,N=x|xk,若MN,则k的取值范围是( )A(,1B1,+)C(1,+)D(,1)二、填空题13设满足约束条件,则的最大值是_14直线l:(t为参数)与圆C:(为参数)相交所得的弦长的取值范围是15(若集合A2,3,7,且A中至多有1个奇数,则这样的集合共有个16已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数17抛物线y2=8x上到顶点和准线距离相等的点的坐标为18抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分已知P(400X450)=0.3,则P(550X600)=三、解答题19已知数列an的前n项和为Sn,且Sn=an,数列bn中,b1=1,点P(bn,bn+1)在直线xy+2=0上(1)求数列an,bn的通项an和bn;(2)设cn=anbn,求数列cn的前n项和Tn20现有5名男生和3名女生(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?21(本小题满分12分)在等比数列中,(1)求数列的通项公式;(2)设,且为递增数列,若,求证:22(本小题满分12分)已知向量满足:,.(1)求向量与的夹角;(2)求.23已知函数f(x)=2x24x+a,g(x)=logax(a0且a1)(1)若函数f(x)在1,3m上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)求实数a的值;设t1=f(x),t2=g(x),t3=2x,当x(0,1)时,试比较t1,t2,t3的大小 24已知函数,(1)当时,求函数的单调区间;(2)若关于的不等式在上有解,求实数的取值范围定州市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】,所以虚部为-1,故选A.2 【答案】C【解析】解:是底面为梯形的棱柱;的两个底面不平行,不是圆台;是四棱锥;不是由棱锥截来的,故选:C3 【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D4 【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=2,x12=2y1,x22=2y2两式相减可得,(x1+x2)(x1x2)=2(y1y2)直线AB的斜率k=1,弦AB所在的直线方程是y+5=x+1,即y=x4故选A,5 【答案】B【解析】解:若,则(a+b)(sinBsinA)sinC(a+c)=0,由正弦定理可得:(a+b)(ba)c(a+c)=0,化为a2+c2b2=ac,cosB=,B(0,),B=,故选:B【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题6 【答案】B【解析】解:由m、n是两条不同的直线,是三个不同的平面:在中:若m,n,则由直线与平面垂直得mn,故正确;在中:若,则,m,由直线垂直于平面的性质定理得m,故正确;在中:若m,n,则由直线与平面垂直的性质定理得mn,故正确;在中:若,m,则m或m,故错误故选:B7 【答案】A【解析】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为8 【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题9 【答案】D【解析】解:y=2x,设切点为(a,a2)y=2a,得切线的斜率为2a,所以2a=tan45=1,a=,在曲线y=x2上切线倾斜角为的点是(,)故选D【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题10【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式11【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A12【答案】B【解析】解:M=x|x1,N=x|xk,若MN,则k1k的取值范围是1,+)故选:B【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题二、填空题13【答案】【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.考点:线性规划14【答案】4,16 【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanx+1;圆C的参数方程(为参数),化为普通方程是(x2)2+(y1)2=64;画出图形,如图所示;直线过定点(0,1),直线被圆截得的弦长的最大值是2r=16,最小值是2=2=2=4弦长的取值范围是4,16故答案为:4,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题15【答案】6 【解析】解:集合A为2,3,7的真子集有7个,奇数3、7都包含的有3,7,则符合条件的有71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查16【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:201617【答案】( 1,2) 【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=2a2+2=,求得a=2点P的坐标为( 1,2)故答案为:( 1,2)【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题18【答案】0.3【解析】离散型随机变量的期望与方差【专题】计算题;概率与统计【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550600)【解答】解:某校高三学生成绩(总分750分)近似服从正态分布,平均成绩为500分,正态分布曲线的对称轴为x=500,P(400450)=0.3,根据对称性,可得P(550600)=0.3故答案为:0.3【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键三、解答题19【答案】 【解析】解:(1)Sn=an,当n2时,an=SnSn1=an,即an=3an1,a1=S1=,a1=3数列an是等比数列,an=3n 点P(bn,bn+1)在直线xy+2=0上,bn+1bn=2,即数列bn是等差数列,又b1=1,bn=2n1(2)cn=anbn=(2n1)3n,Tn=13+332+533+(2n3)3n1+(2n1)3n,3Tn=132+333+534+(2n3)3n+(2n1)3n+1,两式相减得:2Tn=3+2(32+33+34+3n)(2n1)3n+1,=62(n1)3n+1,Tn=3+(n1)3n+120【答案】 【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有 A33A66=4320种(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排21【答案】(1);(2)证明见解析.【解析】试题分析:(1)将化为,联立方程组,求出,可得;(2)由于为递增数列,所以取,化简得,其前项和为.考点:数列与裂项求和法122【答案】(1);(2)【解析】试题分析:(1)要求向量的夹角,只要求得这两向量的数量积,而由已知,结合数量积的运算法则可得,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式,把考点:向量的数量积,向量的夹角与模【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在内及余弦值求出两向量的夹角23【答案】 【解析】解:(1)因为抛物线y=2x24x+a开口向上,对称轴为x=1,所以函数f(x)在(,1上单调递减,在1,+)上单调递增,因为函数f(x)在1,3m上不单调,所以3m1,(2分)得,(3分)(2)因为f(1)=g(1),所以2+a=0,(4分)所以实数a的值为2因为t1=f(x)=x22x+1=(x1)2,t2=g(x)=log2x,t3=2x,所以当x(0,1)时,t1(0,1),(7分)t2(,0),(9分)t3(1,2),(11分)所以t2t1t3(12分)【点评】本题考查的知识点是二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园消防知识培训心得
- 校园应急知识培训课件图片
- 心脏介入试题及答案
- 氧化工艺考试试题及答案
- 环境监理考试题及答案
- 校园安全知识培训课件活动
- 宠物寄养面试题及答案
- 史前文明考试试题及答案
- 政务中心考试试题及答案
- 新乡酒驾考试试题及答案
- 多媒体教室使用的课件
- 2025年军队专业技能岗位文职人员招聘考试(工程机械驾驶员)历年参考题库含答案详解(5卷)
- 2025年下半年广西现代物流集团社会招聘校园招聘笔试参考题库附带答案详解(10套)
- 2025年小学教研室教学计划
- 2025年上海市建筑工程施工合同模板
- 手术室护理业务学习
- 贩卖人口罪与强迫劳动罪
- 新员工入职职业道德培训
- 婚内债务隔离协议书范本
- 含氰废水破氰工艺及操作详解
- 高中英语必背3500单词表完整版
评论
0/150
提交评论