天山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
天山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
天山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
天山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
天山区民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷天山区民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D2 在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD213 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)4 定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x2,2的最大值等于( )A1B1C6D125 设,在约束条件下,目标函数的最大值小于2,则的取值范围为( )A B C. D6 如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值7 设x,y满足线性约束条件,若z=axy(a0)取得最大值的最优解有数多个,则实数a的值为( )A2BCD38 运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为( )Ay=x+2By=Cy=3xDy=3x39 偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为( )A2B1C0D110对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A92%B24%C56%D5.6%115名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A35BCD5312抛物线y=x2上的点到直线4x+3y8=0距离的最小值是( )ABCD3二、填空题13当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是14若log2(2m3)=0,则elnm1=15命题“若,则”的否命题为16函数f(x)=ax+4的图象恒过定点P,则P点坐标是17已知函数f(x)=sinxcosx,则=18已知,与的夹角为,则 三、解答题19某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11()求该校报考飞行员的总人数;()若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差20设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 21在极坐标系中,圆C的极坐标方程为:2=4(cos+sin)6若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系()求圆C的参数方程;()在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标 22椭圆C: =1,(ab0)的离心率,点(2,)在C上(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M证明:直线OM的斜率与l的斜率的乘积为定值23定义在R上的增函数y=f(x)对任意x,yR都有f(x+y)=f(x)+f(y),则(1)求f(0); (2)证明:f(x)为奇函数;(3)若f(k3x)+f(3x9x2)0对任意xR恒成立,求实数k的取值范围 24在ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB(1)求B;(2)若b=2,求ABC面积的最大值天山区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】考点:斜二测画法2 【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B3 【答案】C【解析】解: =f(x0),故选C4 【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C5 【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线截距为,作,向可行域内平移,越向上,则的值越大,从而可得当直线直线过点时取最大值,可求得点的坐标可求的最大值,然后由解不等式可求的范围. 6 【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D7 【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=axy(a0)得y=axz,a0,目标函数的斜率k=a0平移直线y=axz,由图象可知当直线y=axz和直线2xy+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件当直线y=axz和直线x3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件此时a=故选:B8 【答案】 C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上故选:C【点评】本题考查了程序框图的应用问题,是基础题目9 【答案】D【解析】解:f(x+2)为奇函数,f(x+2)=f(x+2),f(x)是偶函数,f(x+2)=f(x+2)=f(x2),即f(x+4)=f(x),则f(x+4)=f(x),f(x+8)=f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由f(x+4)=f(x),得当x=2时,f(2)=f(2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键10【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.03210+0.02410=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是11【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题12【答案】A【解析】解:由,得3x24x+8=0=(4)2438=800所以直线4x+3y8=0与抛物线y=x2无交点设与直线4x+3y8=0平行的直线为4x+3y+m=0联立,得3x24xm=0由=(4)243(m)=16+12m=0,得m=所以与直线4x+3y8=0平行且与抛物线y=x2相切的直线方程为4x+3y=0所以抛物线y=x2上的一点到直线4x+3y8=0的距离的最小值是=故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题二、填空题13【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:214【答案】 【解析】解:log2(2m3)=0,2m3=1,解得m=2,elnm1=eln2e=故答案为:【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用15【答案】若,则【解析】试题分析:若,则,否命题要求条件和结论都否定考点:否命题.16【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题17【答案】 【解析】解:函数f(x)=sinxcosx=sin(x),则=sin()=,故答案为:【点评】本题主要考查两角差的正弦公式,属于基础题18【答案】【解析】解析:本题考查向量夹角与向量数量积的应用与的夹角为,三、解答题19【答案】 【解析】(本小题满分12分)解:()设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,则,解得,由于,故n=55()由()知,一个报考学生的体重超过60公斤的概率为:p=,由题意知X服从二项分布,即:XB(3,),P(X=k)=,k=0,1,2,3,EX=,DX=【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题20【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键21【答案】 【解析】(本小题满分10分)选修44:坐标系与参数方程解:()因为2=4(cos+sin)6,所以x2+y2=4x+4y6,所以x2+y24x4y+6=0,即(x2)2+(y2)2=2为圆C的普通方程所以所求的圆C的参数方程为(为参数)()由()可得,当时,即点P的直角坐标为(3,3)时,x+y取到最大值为6 22【答案】 【解析】解:(1)椭圆C: =1,(ab0)的离心率,点(2,)在C上,可得,解得a2=8,b2=4,所求椭圆C方程为:(2)设直线l:y=kx+b,(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b28=0,故xM=,yM=kxM+b=,于是在OM的斜率为:KOM=,即KOMk=直线OM的斜率与l的斜率的乘积为定值【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力23【答案】 【解析】解:(1)在f(x+y)=f(x)+f(y)中,令x=y=0可得,f(0)=f(0)+f(0),则f(0)=0,(2)令y=x,得f(xx)=f(x)+f(x),又f(0)=0,则有0=f(x)+f(x),即可证得f(x)为奇函数;(3)因为f(x)在R上是增函数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论