吉隆县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
吉隆县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
吉隆县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
吉隆县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
吉隆县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷吉隆县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如果命题pq是真命题,命题p是假命题,那么( )A命题p一定是假命题B命题q一定是假命题C命题q一定是真命题D命题q是真命题或假命题2 函数f(x)=2x的零点个数为( )A0B1C2D33 设有直线m、n和平面、,下列四个命题中,正确的是( )A若m,n,则mnB若m,n,m,n,则C若,m,则mD若,m,m,则m4 数列1,的前100项的和等于( )ABCD5 有下列说法:在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好其中正确命题的个数是( )A0B1C2D36 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限7 已知函数f(x)=x3+(1b)x2a(b3)x+b2的图象过原点,且在原点处的切线斜率是3,则不等式组所确定的平面区域在x2+y2=4内的面积为( )ABCD28 函数f(x)=lnx+1的图象大致为( )ABCD9 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D610在中,角,的对边分别是,为边上的高,若,则到边的距离为( )A2 B3 C.1 D411数列1,3,6,10,的一个通项公式是( )A B C D12利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为( )P(K2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A25%B75%C2.5%D97.5%二、填空题13()0+(2)3 =14已知正四棱锥的体积为,底面边长为,则该正四棱锥的外接球的半径为_15已知ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(cb)sinC,且bc=4,则ABC的面积为16双曲线x2my2=1(m0)的实轴长是虚轴长的2倍,则m的值为17已知命题p:xR,x2+2x+a0,若命题p是假命题,则实数a的取值范围是(用区间表示)18已知圆C1:(x2)2+(y3)2=1,圆C2:(x3)2+(y4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值三、解答题19已知函数f(x)=alnxx(a0)()求函数f(x)的最大值;()若x(0,a),证明:f(a+x)f(ax);()若,(0,+),f()=f(),且,证明:+220在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a(1)求角C的大小;(2)若c=2,a2+b2=6,求ABC的面积21(本题满分12分)已知数列的前项和为,().(1)求数列的通项公式;(2)若数列满足,记,求证:().【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前项和.重点突出运算、论证、化归能力的考查,属于中档难度.22已知奇函数f(x)=(cR)()求c的值;()当x2,+)时,求f(x)的最小值23A1B1C1DD1CBAEF(本题满分12分)如图所示,在正方体ABCDA1B1C1D1中, E、F分别是棱DD1 、C1D1的中点. (1)求直线BE和平面ABB1A1所成角的正弦值; (2)证明:B1F平面A1BE24如图,四棱锥中,为线段上一点,为的中点(1)证明:平面;(2)求直线与平面所成角的正弦值;吉隆县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又命题“非p”也是假命题,命题p为真命题故命题q为可真可假故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键2 【答案】C【解析】解:易知函数的定义域为x|x1,0,函数在(,1)和(1,+)上都是增函数,又0,f(0)=1(2)=30,故函数在区间(4,0)上有一零点;又f(2)=44=0,函数在(1,+)上有一零点0,综上可得函数有两个零点故选:C【点评】本题考查函数零点的判断解题关键是掌握函数零点的判断方法利用函数单调性确定在相应区间的零点的唯一性属于中档题3 【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D4 【答案】A【解析】解:=1故选A5 【答案】C【解析】解:在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此不正确比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确综上可知:其中正确命题的是故选:C【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题6 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A7 【答案】 B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2则f(x)=x3x2+ax,函数的导数f(x)=x22x+a,因为原点处的切线斜率是3,即f(0)=3,所以f(0)=a=3,故a=3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求kOB=,kOA=,tanBOA=1,BOA=,扇形的圆心角为,扇形的面积是圆的面积的八分之一,圆x2+y2=4在区域D内的面积为4=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键8 【答案】A【解析】解:f(x)=lnx+1,f(x)=,f(x)在(0,4)上单调递增,在(4,+)上单调递减;且f(4)=ln42+1=ln410;故选A【点评】本题考查了导数的综合应用及函数的图象的应用9 【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题10【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.11【答案】C【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C考点:数列的通项公式12【答案】D【解析】解:k5、024,而在观测值表中对应于5.024的是0.025,有10.025=97.5%的把握认为“X和Y有关系”,故选D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目二、填空题13【答案】 【解析】解:()0+(2)3=1+(2)2=1+=故答案为:14【答案】【解析】因为正四棱锥的体积为,底面边长为,所以锥高为2,设外接球的半径为,依轴截面的图形可知:15【答案】 【解析】解:asinA=bsinB+(cb)sinC,由正弦定理得a2=b2+c2bc,即:b2+c2a2=bc,由余弦定理可得b2=a2+c22accosB,cosA=,A=60可得:sinA=,bc=4,SABC=bcsinA=故答案为:【点评】本题主要考查了解三角形问题考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题16【答案】4 【解析】解:双曲线x2my2=1化为x2=1,a2=1,b2=,实轴长是虚轴长的2倍,2a=22b,化为a2=4b2,即1=,解得m=4故答案为:4【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键17【答案】(1,+) 【解析】解:命题p:xR,x2+2x+a0,当命题p是假命题时,命题p:xR,x2+2x+a0是真命题;即=44a0,a1;实数a的取值范围是(1,+)故答案为:(1,+)【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目18【答案】54 【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:4=54故答案为:54【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题三、解答题19【答案】 【解析】解:()令,所以x=a易知,x(0,a)时,f(x)0,x(a,+)时,f(x)0故函数f(x)在(0,a)上递增,在(a,+)递减故f(x)max=f(a)=alnaa()令g(x)=f(ax)f(a+x),即g(x)=aln(ax)aln(a+x)+2x所以,当x(0,a)时,g(x)0所以g(x)g(0)=0,即f(a+x)f(ax)()依题意得:a,从而a(0,a)由()知,f(2a)=fa+(a)fa(a)=f()=f()又2aa,a所以2a,即+2a【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用20【答案】 【解析】(本小题满分10分)解:(1),2分在锐角ABC中,3分故sinA0,5分(2),6分,即ab=2,8分10分【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题21【答案】【解析】22【答案】 【解析】解:()f(x)是奇函数,f(x)=f(x),=,比较系数得:c=c,c=0,f(x)=x+;()f(x)=x+,f(x)=1,当x2,+)时,10,函数f(x)在2,+)上单调递增,f(x)min=f(2)=【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题23【答案】解:(1)设G是AA1的中点,连接GE,BGE为DD1的中点,ABCDA1B1C1D1为正方体,GEAD,又AD平面ABB1A1,GE平面ABB1A1,且斜线BE在平面ABB1A1内的射影为BG,RtBEG中的EBG是直线BE和平面ABB1A1所成角,即EBG=设正方体的棱长为,直线BE和平面ABB1A1所成角的正弦值为:;6分(2)证明:连接EF、AB1、C1D,记AB1与A1B的交点为H,连接EHH为A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论