




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
博湖县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2 已知集合(其中为虚数单位),则( )A B C D3 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=04 满足下列条件的函数中,为偶函数的是( )A. B. C. D.【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.5 设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为( )ABCD3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想6 设集合A=x|y=ln(x1),集合B=y|y=2x,则AB( )A(0,+)B(1,+)C(0,1)D(1,2)7 设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)8 已知直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8平行,则实数m的值为( )A7B1C1或7D9 已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D9810如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+11命题“aR,函数y=”是增函数的否定是( )A“aR,函数y=”是减函数B“aR,函数y=”不是增函数C“aR,函数y=”不是增函数D“aR,函数y=”是减函数12一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD二、填空题13在ABC中,若a=9,b=10,c=12,则ABC的形状是 14若log2(2m3)=0,则elnm1=15若非零向量,满足|+|=|,则与所成角的大小为16为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()ta(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室 17【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为_18设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为,则此双曲线的标准方程是 .三、解答题19已知函数f(x)=xlnx,求函数f(x)的最小值20求下列函数的定义域,并用区间表示其结果(1)y=+;(2)y=21已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 22如图,在长方体ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动(1)证明:BC1平面ACD1(2)当时,求三棱锥EACD1的体积23已知z是复数,若z+2i为实数(i为虚数单位),且z4为纯虚数(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围24已知函数f(x)=ax(a0且a1)的图象经过点(2,)(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x0)的值域博湖县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A2 【答案】D【解析】考点:1.复数的相关概念;2.集合的运算3 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=04 【答案】D.【解析】5 【答案】B【解析】6 【答案】A【解析】解:集合A=x|y=ln(x1)=(1,+),集合B=y|y=2x=(0,+)则AB=(0,+)故选:A【点评】本题考查了集合的化简与运算问题,是基础题目7 【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B8 【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8,l1与l2平行所以,解得m=7故选:A【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力9 【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性10【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目11【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“aR,函数y=”是增函数的否定是:“aR,函数y=”不是增函数故选:C【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题12【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义二、填空题13【答案】锐角三角形【解析】解:c=12是最大边,角C是最大角根据余弦定理,得cosC=0C(0,),角C是锐角,由此可得A、B也是锐角,所以ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题14【答案】 【解析】解:log2(2m3)=0,2m3=1,解得m=2,elnm1=eln2e=故答案为:【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用15【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值16【答案】0.6【解析】解:当t0.1时,可得1=()0.1a0.1a=0a=0.1由题意可得y0.25=,即()t0.1,即t0.1解得t0.6,由题意至少需要经过0.6小时后,学生才能回到教室故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力易错点:只单纯解不等式,而忽略题意,得到其他错误答案17【答案】【解析】18【答案】【解析】试题分析:由题意可知椭圆的焦点在轴上,且,故焦点坐标为由双曲线的定义可得,故,故所求双曲线的标准方程为故答案为:考点:双曲线的简单性质;椭圆的简单性质三、解答题19【答案】 【解析】解:函数的定义域为(0,+)求导函数,可得f(x)=1+lnx令f(x)=1+lnx=0,可得0x时,f(x)0,x时,f(x)0时,函数取得极小值,也是函数的最小值f(x)min=【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题20【答案】 【解析】解:(1)y=+,解得x2且x2且x3,函数y的定义域是(2,3)(3,+);(2)y=,解得x4且x1且x3,函数y的定义域是(,1)(1,3)(3,421【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 22【答案】 【解析】(1)证明:ABC1D1,AB=C1D1,四边形ABC1D1是平行四边形,BC1AD1,又AD1平面ACD1,BC1平面ACD1,BC1平面ACD1(2)解:SACE=AEAD=V=V=【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题23【答案】 【解析】解:(1)设z=x+yi(x,yR)由z+2i=x+(y+2)i为实数,得y+2=0,即y=2由z4=(x4)+yi为纯虚数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年税务师题库及1套参考答案
- 2024年健康知识竞赛题库及答案
- 燃气证考试题2025年及答案
- 2025年全国煤矿特种作业人员井下电钳工理论考试题库含答案
- 2025年5月环境管理体系试题及答案(完整版本+解析)
- 100MW独立混合储能项目资金申请报告(范文模板)
- 2024年甘肃省武威市凉州区凉州区中坝九年制学校联片教研二模物理试题
- 房屋买卖订金合同
- 江苏商品房买卖合同
- 2025年山东高密大昌纺织有限公司校园招聘85人公开引进高层次人才和急需紧缺人才笔试参考题库答案详解版及参考答案详解一套
- 统编版(2025)七年级下册道德与法治1.3《学会自我保护》教案
- 孕产期保健知识
- 2025年设计顾问技术服务合同模板
- 实验试剂耗材供应服务方案
- 初三下学期英语项目式学习方案
- 2025年度美团外卖配送员招聘合同范本
- 2025年度物流运输应急演练计划
- 有害物质管控标准
- GB/T 44927-2024知识管理体系要求
- 达州电力集团笔试真题
- 医院净化设计方案
评论
0/150
提交评论