叙永县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
叙永县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
叙永县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
叙永县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
叙永县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

叙永县第一中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 经过点且在两轴上截距相等的直线是( )A BC或 D或2 已知aR,复数z=(a2i)(1+i)(i为虚数单位)在复平面内对应的点为M,则“a=0”是“点M在第四象限”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件3 已知f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,则f(x)g(x)0的解集为( )A(,a2)(a2,)B(,a2)(a2,)C(,a2)(a2,b)D(b,a2)(a2,)4 利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a1)0成立的概率是( )ABCD5 定义在(0,+)上的函数f(x)满足:0,且f(2)=4,则不等式f(x)0的解集为( )A(2,+)B(0,2)C(0,4)D(4,+)6 设集合,集合,若 ,则的取值范围( )A B C. D7 已知函数f(x)=sin2(x)(0)的周期为,若将其图象沿x轴向右平移a个单位(a0),所得图象关于原点对称,则实数a的最小值为( )ABCD8 已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD9 已知集合A=4,5,6,8,B=3,5,7,8,则集合AB=( )A5,8B4,5,6,7,8C3,4,5,6,7,8D4,5,6,7,810函数y=2|x|的图象是( )ABCD11已知在R上可导的函数f(x)的图象如图所示,则不等式f(x)f(x)0的解集为( )A(2,0)B(,2)(1,0)C(,2)(0,+)D(2,1)(0,+)12将n2个正整数1、2、3、n2(n2)任意排成n行n列的数表对于某一个数表,计算某行或某列中的任意两个数a、b(ab)的比值,称这些比值中的最小值为这个数表的“特征值”当n=2时,数表的所有可能的“特征值”的最大值为( )ABC2D3二、填空题13设i是虚数单位,是复数z的共轭复数,若复数z=3i,则z=14“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配”游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是15在数列中,则实数a=,b=16如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想17已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:(,)的渐近线恰好过点,则双曲线的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.18在矩形ABCD中,=(1,3),则实数k=三、解答题19火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?20设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为2cos2+3=0,曲线C2的参数方程为(t是参数,m是常数)()求C1的直角坐标方程和C2的普通方程;()若C1与C2有两个不同的公共点,求m的取值范围 21已知cos(+)=,求的值22某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元()若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,nN)的函数解析式f(n);()该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:周需求量n1819202122频数12331以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望23设函数f(x)=x36x+5,xR()求f(x)的单调区间和极值;()若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围24已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn叙永县第一中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】考点:直线的方程.2 【答案】A【解析】解:若a=0,则z=2i(1+i)=22i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a2)i,推出2a2,推不出a=0,不是必要条件;故选:A【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题3 【答案】A【解析】解:f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,f(x)0的解集为(b,a2),g(x)0的解集为(,),则不等式f(x)g(x)0等价为或,即a2x或xa2,故不等式的解集为(,a2)(a2,),故选:A【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)0和g(x)0的解集是解决本题的关键4 【答案】C【解析】解:由ln(3a1)0得a,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a1)0成立的概率是P=,故选:C5 【答案】B【解析】解:定义在(0,+)上的函数f(x)满足:0f(2)=4,则2f(2)=8,f(x)0化简得,当x2时,成立故得x2,定义在(0,+)上不等式f(x)0的解集为(0,2)故选B【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解属于中档题6 【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.7 【答案】D【解析】解:由函数f(x)=sin2(x)=cos2x (0)的周期为=,可得=1,故f(x)=cos2x若将其图象沿x轴向右平移a个单位(a0),可得y=cos2(xa)=cos(2x2a)的图象;再根据所得图象关于原点对称,可得2a=k+,a=+,kZ则实数a的最小值为故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(x+)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题8 【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D9 【答案】C【解析】解:A=4,5,6,8,B=3,5,7,8,AB=3,4,5,6,7,8故选C10【答案】B【解析】解:f(x)=2|x|=2|x|=f(x)y=2|x|是偶函数,又函数y=2|x|在0,+)上单调递增,故C错误且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键11【答案】B【解析】解:由f(x)图象单调性可得f(x)在(,1)(0,+)大于0,在(1,0)上小于0,f(x)f(x)0的解集为(,2)(1,0)故选B12【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为故选:B【点评】题考查类比推理和归纳推理,属基础题二、填空题13【答案】10 【解析】解:由z=3i,得z=故答案为:10【点评】本题考查公式,考查了复数模的求法,是基础题14【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目15【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用16【答案】17【答案】18【答案】4 【解析】解:如图所示,在矩形ABCD中,=(1,3),=(k1,2+3)=(k1,1),=1(k1)+(3)1=0,解得k=4故答案为:4【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目三、解答题19【答案】 【解析】解:由条件=,设,在中,由余弦定理得.=.在中,由正弦定理,得()(分钟)答到火车站还需15分钟. 20【答案】 【解析】解:(I)曲线C1的极坐标方程为2cos2+3=0,即2(cos2sin2)+3=0,可得直角坐标方程:x2y2+3=0曲线C2的参数方程为(t是参数,m是常数),消去参数t可得普通方程:x2ym=0(II)把x=2y+m代入双曲线方程可得:3y2+4my+m2+3=0,由于C1与C2有两个不同的公共点,=16m212(m2+3)0,解得m3或m3,m3或m3【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题 21【答案】 【解析】解:, +(,),cos(+)=,sin(+)=,sin(+)=sincos+cossin=(cos+sin)=,sin+cos=,cos(+)=coscossinsin=(coscos)=,cossin=,联立,得cos=,sin=,=【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用22【答案】 【解析】解:(I)当n20时,f(n)=50020+200(n20)=200n+6000,当n19时,f(n)=500n100(20n)=600n2000,( II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X的分布列为X88009400100001020010400P0.10.20.30.30.1EX=88000.1+94000.2+100000.3+102000.3+104000.1=986023【答案】 【解析】解:()当,f(x)的单调递增区间是,单调递减区间是当;当()由()的分析可知y=f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论