




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷甘德县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若向量(1,0,x)与向量(2,1,2)的夹角的余弦值为,则x为( )A0B1C1D22 抛物线x=4y2的准线方程为( )Ay=1By=Cx=1Dx=3 下列函数中,定义域是且为增函数的是( )A. B. C. D.4 设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D65 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字09中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有( )AabBabCa=bDa,b的大小与m,n的值有关6 若集合M=y|y=2x,x1,N=x|0,则 NM( )A(11,B(0,1C1,1D(1,27 设曲线y=ax2在点(1,a)处的切线与直线2xy6=0平行,则a=( )A1BCD18 曲线y=在点(1,1)处的切线方程为( )Ay=x2By=3x+2Cy=2x3Dy=2x+19 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社区抽取低收入家庭的户数为( )A48 B36 C24 D18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题10已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D9811已知函数f(x)=log2x,在下列区间中,包含f(x)零点的区间是( )A(0,1)B(1,2)C(2,4)D(4,+)12下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)二、填空题13已知函数f(x)=恰有两个零点,则a的取值范围是14如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是15某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产类产品50件,类产品140件,所需租赁费最少为_元.16椭圆+=1上的点到直线l:x2y12=0的最大距离为17椭圆C: +=1(ab0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为18给出下列四个命题:函数f(x)=12sin2的最小正周期为2;“x24x5=0”的一个必要不充分条件是“x=5”;命题p:xR,tanx=1;命题q:xR,x2x+10,则命题“p(q)”是假命题;函数f(x)=x33x2+1在点(1,f(1)处的切线方程为3x+y2=0其中正确命题的序号是三、解答题19已知函数f(x)=x3+ax+2()求证:曲线=f(x)在点(1,f(1)处的切线在y轴上的截距为定值;()若x0时,不等式xex+mf(x)am2x恒成立,求实数m的取值范围 20已知数列an共有2k(k2,kZ)项,a1=1,前n项和为Sn,前n项乘积为Tn,且an+1=(a1)Sn+2(n=1,2,2k1),其中a=2,数列bn满足bn=log2,()求数列bn的通项公式;()若|b1|+|b2|+|b2k1|+|b2k|,求k的值21(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都相切.(1)求;(2)若直线与圆交于两点,求.22设点P的坐标为(x3,y2)(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率23某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?24已知函数f(x)=(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值 甘德县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:由题意=,1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点2 【答案】D【解析】解:抛物线x=4y2即为y2=x,可得准线方程为x=故选:D3 【答案】B 【解析】试题分析:对于A,为增函数,为减函数,故为减函数,对于B,故为增函数,对于C,函数定义域为,不为,对于D,函数为偶函数,在上单调递减,在上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.4 【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B5 【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b故选:C6 【答案】B【解析】解:由M中y=2x,x1,得到0y2,即M=(0,2,由N中不等式变形得:(x1)(x+1)0,且x+10,解得:1x1,即N=(1,1,则MN=(0,1,故选:B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键7 【答案】A【解析】解:y=2ax,于是切线的斜率k=y|x=1=2a,切线与直线2xy6=0平行有2a=2a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率8 【答案】D【解析】解:y=()=,k=y|x=1=2l:y+1=2(x1),则y=2x+1故选:D9 【答案】【解析】根据分层抽样的要求可知在社区抽取户数为10【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性11【答案】C【解析】解:f(x)=log2x,f(2)=20,f(4)=0,满足f(2)f(4)0,f(x)在区间(2,4)内必有零点,故选:C12【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D二、填空题13【答案】(3,0) 【解析】解:由题意,a0时,x0,y=2x3ax21,y=6x22ax0恒成立,f(x)在(0,+)上至多一个零点;x0,函数y=|x3|+a无零点,a0,不符合题意;3a0时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上无零点,符合题意;a=3时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上有零点1,不符合题意;a3时,函数y=|x3|+a在0,+)上有两个零点,函数y=2x3ax21在(,0)上有两个零点,不符合题意;综上所述,a的取值范围是(3,0)故答案为(3,0)14【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题15【答案】【解析】111试题分析:根据题意设租赁甲设备,乙设备,则,求目标函数的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值.1111考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.16【答案】4 【解析】解:由题意,设P(4cos,2sin)则P到直线的距离为d=,当sin()=1时,d取得最大值为4,故答案为:417【答案】 【解析】解:椭圆C: +=1(ab0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a=8,可得a=4,b2=a2c2=12,可得b=2,椭圆的短轴长为:4故答案为:4【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力18【答案】 【解析】解:,T=2,故正确;当x=5时,有x24x5=0,但当x24x5=0时,不能推出x一定等于5,故“x=5”是“x24x5=0”成立的充分不必要条件,故错误;易知命题p为真,因为0,故命题q为真,所以p(q)为假命题,故正确;f(x)=3x26x,f(1)=3,在点(1,f(1)的切线方程为y(1)=3(x1),即3x+y2=0,故正确综上,正确的命题为故答案为三、解答题19【答案】 【解析】()证明:f(x)的导数f(x)=x2+a,即有f(1)=a+,f(1)=1+a,则切线方程为y(a+)=(1+a)(x1),令x=0,得y=为定值; ()解:由xex+mf(x)am2x对x0时恒成立,得xex+mx2m2x0对x0时恒成立,即ex+mxm20对x0时恒成立,则(ex+mxm2)min0,记g(x)=ex+mxm2,g(x)=ex+m,由x0,ex1,若m1,g(x)0,g(x)在0,+)上为增函数,则有1m1,若m1,则当x(0,ln(m)时,g(x)0,g(x)为减函数,则当x(ln(m),+)时,g(x)0,g(x)为增函数,1ln(m)+m0,令m=t,则t+lnt10(t1),(t)=t+lnt1,显然是增函数,由t1,(t)(1)=0,则t1即m1,不合题意综上,实数m的取值范围是1m1【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想20【答案】 【解析】(本小题满分13分)解:(1)当n=1时,a2=2a,则;当2n2k1时,an+1=(a1)Sn+2,an=(a1)Sn1+2,所以an+1an=(a1)an,故=a,即数列an是等比数列,Tn=a1a2an=2na1+2+(n1)=,bn=(2)令,则nk+,又nN*,故当nk时,当nk+1时,|b1|+|b2|+|b2k1|+|b2k|=+()+()=(k+1+b2k)(b1+bk)=+k=,由,得2k26k+30,解得,又k2,且kN*,所以k=2【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用21【答案】(1) ,;(2).【解析】试题解析:(1)由题意,圆方程为,且,圆与直线及轴都相切,圆方程为,化为一般方程为,.(2)圆心到直线的距离为,.考点:圆的方程;2.直线与圆的位置关系.122【答案】 【解析】解:(1)由已知得,基本事件(2,1),(2,0),(2,1),(1,1),(1,0),(1,1),(0,1),(0,0)(0,1)共9种4(分)设“点P在第二象限”为事件A,事件A有(2,1),(1,1)共2种则P(A)=6(分)(2)设“点P在第三象限”为事件B,则事件B满足8(分),作出不等式组对应的平面区域如图:则P(B)=12(分)23【答案】【解析】(1)f(t)=10=102sin(t+),t0,24),t+,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为102=8,故实验室这一天的最大温差为128=4。(2)由题意可得,当f(t)11时,需要降温,由()可得f(t)=102sin(t+),由102sin(t+)11,求得sin(t+),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年城市轨道交通运营安全考核试题
- 笔类产品可靠性测试的研究与应用-洞察及研究
- 小学英语听说读写教学策略
- 2024秋八年级道德与法治上册 第五单元 危害之中有法护 第17课 遭遇侵害靠法护说课稿 首师大版
- 福建省厦门市双十中学高中音乐教学设计:乡土的情怀-卡玛林斯卡亚幻想曲
- 民间音乐数字化保护研究-洞察及研究
- 软件定义能耗管理-洞察及研究
- 中东海上通道-洞察及研究
- 家庭照护理论竞赛题库及答案解析
- 企业内训材料准备与授课工具包
- 2025年9月江苏扬州市第二人民医院(苏北人民医院北区医院) 招聘备案制工作人员12人考试参考题库及答案解析
- 数据挖掘教学课件
- 电池厂化成柜安全操作规范规章
- 电力公司施工安全培训课件
- 2025年一级建造师《(市政公用工程)管理与实务》考试真题及答案
- 2025年销售逻辑笔试题目及答案
- 宏村简介课件
- 2025四川安和精密电子电器股份有限公司招聘NPI工程师1人备考练习题库及答案解析
- 9 古代科技 耀我中华 课件(共2课时) 部编版道德与法治五年级上册
- 潍坊市2026届高三开学调研监测考试数学试题及答案
- 车辆产品公告管理办法
评论
0/150
提交评论