龙港区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
龙港区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
龙港区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
龙港区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
龙港区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

龙港区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在三棱柱中,已知平面,此三棱 柱各个顶点都在一个球面上,则球的体积为( ) A B C. D2 某几何体的三视图如图所示,该几何体的体积是( )ABCD3 集合,则,的关系( )A B C D4 用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为( )Aa,b,c中至少有两个偶数Ba,b,c中至少有两个偶数或都是奇数Ca,b,c都是奇数Da,b,c都是偶数5 已知直线l平面,直线m平面,有下面四个命题:(1)lm,(2)lm,(3)lm,(4)lm,其中正确命题是( )A(1)与(2)B(1)与(3)C(2)与(4)D(3)与(4)6 在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D27 已知=(2,3,1),=(4,2,x),且,则实数x的值是( )A2B2CD8 命题:“xR,x2x+20”的否定是( )AxR,x2x+20BxR,x2x+20CxR,x2x+20DxR,x2x+209 已知a=5,b=log2,c=log5,则( )AbcaBabcCacbDbac10设函数f(x)=,f(2)+f(log210)=( )A11B8C5D211集合的真子集共有( )A个 B个 C个 D个12设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或8二、填空题13一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是14如图,在棱长为1的正方体ABCDA1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为15若命题“xR,|x2|kx+1”为真,则k的取值范围是16已知函数f(x)=xm过点(2,),则m=17若函数的定义域为,则函数的定义域是 18设f(x)是定义在R上的周期为2的函数,当x1,1)时,f(x)=,则f()=三、解答题19已知函数f(x)=4xa2x+1+a+1,aR(1)当a=1时,解方程f(x)1=0;(2)当0x1时,f(x)0恒成立,求a的取值范围;(3)若函数f(x)有零点,求实数a的取值范围 20已知集合A=x|a1x2a+1,B=x|0x1(1)若a=,求AB(2)若AB=,求实数a的取值范围 21如图,已知边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点()试在棱AD上找一点N,使得CN平面AMP,并证明你的结论()证明:AMPM22设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 23已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围24已知是等差数列,是等比数列,为数列的前项和,且,()(1)求和;(2)若,求数列的前项和龙港区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】 考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.2 【答案】A【解析】解:几何体如图所示,则V=,故选:A【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键3 【答案】A【解析】试题分析:通过列举可知,所以.考点:两个集合相等、子集14 【答案】B【解析】解:结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数反设的内容是 假设a,b,c中至少有两个偶数或都是奇数故选B【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“5 【答案】B【解析】解:直线l平面,l平面,又直线m平面,lm,故(1)正确;直线l平面,l平面,或l平面,又直线m平面,l与m可能平行也可能相交,还可以异面,故(2)错误;直线l平面,lm,m,直线m平面,故(3)正确;直线l平面,lm,m或m,又直线m平面,则与可能平行也可能相交,故(4)错误;故选B【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键6 【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题7 【答案】A【解析】解: =(2,3,1),=(4,2,x),且,=0,86+x=0;x=2;故选A【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值8 【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“xR,x2x+20”的否定是xR,x2x+20故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查9 【答案】C【解析】解:a=51,b=log2log5=c0,acb故选:C10【答案】B【解析】解:f(x)=,f(2)=1+log24=1+2=3,=5,f(2)+f(log210)=3+5=8故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用11【答案】C【解析】考点:真子集的概念.12【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D二、填空题13【答案】 【解析】解:由题意可得,2a,2b,2c成等差数列2b=a+c4b2=a2+2ac+c2b2=a2c2联立可得,5c2+2ac3a2=05e2+2e3=00e1故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题14【答案】 【解析】解:如图,将AM平移到B1E,NC平移到B1F,则EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=cosEB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题15【答案】1,) 【解析】解:作出y=|x2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k1,)故答案为:1,)【点评】本题考查全称命题,考查数形结合的数学思想,比较基础16【答案】1 【解析】解:将(2,)代入函数f(x)得: =2m,解得:m=1;故答案为:1【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题17【答案】【解析】试题分析:依题意得.考点:抽象函数定义域18【答案】1 【解析】解:f(x)是定义在R上的周期为2的函数,=1故答案为:1【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”三、解答题19【答案】 【解析】解:(1)a=1时,f(x)=4x22x+2,f(x)1=(2x)22(2x)+1=(2x1)2=0,2x=1,解得:x=0;(2)4xa(2x+11)+10在(0,1)恒成立,a(22x1)4x+1,2x+11,a,令2x=t(1,2),g(t)=,则g(t)=0,t=t0,g(t)在(1,t0)递减,在(t0,2)递增,而g(1)=2,g(2)=,a2;(3)若函数f(x)有零点,则a=有交点,由(2)令g(t)=0,解得:t=,故a【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题20【答案】【解析】解:(1)当a=时,A=x|,B=x|0x1AB=x|0x1(2)若AB=当A=时,有a12a+1a2当A时,有2a或a2综上可得,或a2【点评】本题主要考查了集合交集的求解,解题时要注意由AB=时,要考虑集合A=的情况,体现了分类讨论思想的应用21【答案】 【解析】()解:在棱AD上找中点N,连接CN,则CN平面AMP;证明:因为M为BC的中点,四边形ABCD是矩形,所以CM平行且相等于DN,所以四边形MCNA为矩形,所以CNAM,又CN平面AMP,AM平面AMP,所以CN平面AMP()证明:过P作PECD,连接AE,ME,因为边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点所以PE平面ABCD,CM=,所以PEAM,在AME中,AE=3,ME=,AM=,所以AE2=AM2+ME2,所以AMME,所以AM平面PME所以AMPM【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想22【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键23【答案】 【解析】解:(1)函数f(x)的定义域为(0,+),f(x)=k=0,x=,由ln1+1=0,可得k=1;(2)当k0时,f(x)=k0,f(x)在(0,+)上是增函数;当k0时,若x(0,)时,有f(x)0,若x(,+)时,有f(x)0,则f(x)在(0,)上是增函数,在(,+)上是减函数k0时,f(x)在(0,+)上是增函数,而f(1)=1k0,f(x)0不成立,故k0,f(x)的最大值为f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论