渑池县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
渑池县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
渑池县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
渑池县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
渑池县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷渑池县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 幂函数y=f(x)的图象经过点(2,),则满足f(x)=27的x的值是( )ABC3D32 双曲线=1(mZ)的离心率为( )AB2CD33 根据中华人民共和国道路交通安全法规定:车辆驾驶员血液酒精浓度在2080mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上,属于醉酒驾车据法制晚报报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A2160B2880C4320D86404 函数f(x)=x33x2+5的单调减区间是( )A(0,2) B(0,3) C(0,1) D(0,5)5 如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是( )Ax2=1B=1C=1D=16 已知角的终边经过点,则的值为( )A B C. D07 一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )Ai5?Bi4?Ci4?Di5?8 已知直线mxy+1=0交抛物线y=x2于A、B两点,则AOB( )A为直角三角形B为锐角三角形C为钝角三角形D前三种形状都有可能9 在等差数列中,已知,则( )A12B24C36D4810已知全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为( )AMNB(UM)NCM(UN)D(UM)(UN)11双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD12已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD二、填空题13已知正四棱锥的体积为,底面边长为,则该正四棱锥的外接球的半径为_14将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的值是 15利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|ab|2发生的概率是16计算:51=17如图,已知,是异面直线,点,且;点,且.若,分别是,的中点,则与所成角的余弦值是_.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.18命题:“xR,都有x31”的否定形式为三、解答题19已知命题p:“存在实数a,使直线x+ay2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且q”是真命题,求实数a的取值范围20已知等差数列an,等比数列bn满足:a1=b1=1,a2=b2,2a3b3=1()求数列an,bn的通项公式;()记cn=anbn,求数列cn的前n项和Sn21若an的前n项和为Sn,点(n,Sn)均在函数y=的图象上(1)求数列an的通项公式;(2)设,Tn是数列bn的前n项和,求:使得对所有nN*都成立的最大正整数m22已知数列an是等比数列,Sn为数列an的前n项和,且a3=3,S3=9()求数列an的通项公式;()设bn=log2,且bn为递增数列,若cn=,求证:c1+c2+c3+cn123(本小题满分12分)设f(x)x2axa2ln x(a0)(1)讨论f(x)的单调性;(2)是否存在a0,使f(x)e1,e2对于x1,e时恒成立,若存在求出a的值,若不存在说明理由24(本小题满分12分)中央电视台电视公开课开讲了需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.渑池县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:设幂函数为y=x,因为图象过点(2,),所以有=(2),解得:=3所以幂函数解析式为y=x3,由f(x)=27,得:x3=27,所以x=故选A2 【答案】B【解析】解:由题意,m240且m0,mZ,m=1双曲线的方程是y2x2=1a2=1,b2=3,c2=a2+b2=4a=1,c=2,离心率为e=2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b23 【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:288000.15=4320故选C【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题4 【答案】A【解析】解:f(x)=x33x2+5,f(x)=3x26x,令f(x)0,解得:0x2,故选:A【点评】本题考察了函数的单调性,导数的应用,是一道基础题5 【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2y2=(0),代入点P(2,),可得=42=2,可得双曲线的方程为x2y2=2,即为=1故选:B6 【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.7 【答案】 B【解析】解:模拟执行程序框图,可得i=1,sum=0,s=0满足条件,i=2,sum=1,s=满足条件,i=3,sum=2,s=+满足条件,i=4,sum=3,s=+满足条件,i=5,sum=4,s=+=1+=由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i4故选:B【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误8 【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2mx1=0,根据韦达定理得:x1x2=1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=1+1=0,则,AOB为直角三角形故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直9 【答案】B【解析】,所以,故选B答案:B 10【答案】B【解析】解:全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,UM=0,1,N(UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题11【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A12【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题二、填空题13【答案】【解析】因为正四棱锥的体积为,底面边长为,所以锥高为2,设外接球的半径为,依轴截面的图形可知:14【答案】【解析】考点:点关于直线对称;直线的点斜式方程.15【答案】 【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是66=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|ab|2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|ab|2发生的概率是P=故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键16【答案】9 【解析】解:51=(5)(9)=9,51=9,故答案为:917【答案】【解析】18【答案】x0R,都有x031 【解析】解:因为全称命题的否定是特称命题所以,命题:“xR,都有x31”的否定形式为:命题:“x0R,都有x031”故答案为:x0R,都有x031【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查三、解答题19【答案】 【解析】解:直线x+ay2=0与圆x2+y2=1有公共点1a21,即a1或a1,命题p为真命题时,a1或a1;点(a,1)在椭圆内部,命题q为真命题时,2a2,由复合命题真值表知:若命题“p且q”是真命题,则命题p,q都是真命题即p真q假,则a2或a2故所求a的取值范围为(,22,+)20【答案】 【解析】解:(I)设等差数列an的公差为d,等比数列bn的公比为q:a1=b1=1,a2=b2,2a3b3=11+d=q,2(1+2d)q2=1,解得或an=1,bn=1;或an=1+2(n1)=2n1,bn=3n1(II)当时,cn=anbn=1,Sn=n当时,cn=anbn=(2n1)3n1,Sn=1+33+532+(2n1)3n1,3Sn=3+332+(2n3)3n1+(2n1)3n,2Sn=1+2(3+32+3n1)(2n1)3n=1(2n1)3n=(22n)3n2,Sn=(n1)3n+1【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题21【答案】 【解析】解:(1)由题意知:Sn=n2n,当n2时,an=SnSn1=3n2,当n=1时,a1=1,适合上式,则an=3n2;(2)根据题意得:bn=,Tn=b1+b2+bn=1+=1,Tn在nN*上是增函数,(Tn)min=T1=,要使Tn对所有nN*都成立,只需,即m15,则最大的正整数m为1422【答案】已知数列an是等比数列,Sn为数列an的前n项和,且a3=3,S3=9()求数列an的通项公式;()设bn=log2,且bn为递增数列,若cn=,求证:c1+c2+c3+cn1【考点】数列的求和;等比数列的通项公式【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列【分析】()设数列an的公比为q,从而可得3(1+)=9,从而解得;()讨论可知a2n+3=3()2n=3()2n,从而可得bn=log2=2n,利用裂项求和法求和【解析】解:()设数列an的公比为q,则3(1+)=9,解得,q=1或q=;故an=3,或an=3()n3;()证明:若an=3,则bn=0,与题意不符;故a2n+3=3()2n=3()2n,故bn=log2=2n,故cn=,故c1+c2+c3+cn=1+=11【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用23【答案】【解析】解:(1)f(x)x2axa2ln x的定义域为x|x0,f(x)2xa.当a0时,由f(x)0得x,由f(x)0得0x.此时f(x)在(0,)上单调递增,在(,)上单调递减;当a0时,由f(x)0得xa,由f(x)0得0xa,此时f(x)在(0,a)上单调递增,在(a,)上单调递减(2)假设存在满足条件的实数a,x1,e时,f(x)e1,e2,f(1)1ae1,即ae,由(1)知f(x)在(0,a)上单调递增,f(x)在1,e上单调递增,f(e)e2aee2e2,即ae,由可得ae,故存在ae,满足条件 24【答案】(1)甲,乙,丙,丁;(2).【解析】试题分析:(1)从这名

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论