




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
剑阁县第一中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设F1,F2分别是椭圆+=1(ab0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若F1PQ=60,|PF1|=|PQ|,则椭圆的离心率为( )ABCD2 数列1,4,7,10,(1)n(3n2)的前n项和为Sn,则S11+S20=( )A16B14C28D303 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD4 ABC中,A(5,0),B(5,0),点C在双曲线上,则=( )ABCD5 若动点A,B分别在直线l1:x+y7=0和l2:x+y5=0上移动,则AB的中点M到原点的距离的最小值为( )A3B2C3D46 已知等比数列an的第5项是二项式(x+)4展开式的常数项,则a3a7( )A5B18C24D367 下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|8 在等比数列an中,已知a1=3,公比q=2,则a2和a8的等比中项为( )A48B48C96D969 设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若, ,则 C若,则 D若,则10设向量,满足:|=3,|=4, =0以,的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A3B4C5D611在ABC中,角A,B,C所对的边分别是a,b,c,若+1=0,则角B的度数是( )A60B120C150D60或12012己知y=f(x)是定义在R上的奇函数,当x0时,f(x)=x+2,那么不等式2f(x)10的解集是( )AB或CD或二、填空题13设向量a(1,1),b(0,t),若(2ab)a2,则t_14已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是15的展开式中的系数为 (用数字作答)16在直角坐标系xOy中,已知点A(0,1)和点B(3,4),若点C在AOB的平分线上且|=2,则=17设某总体是由编号为的20个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为_1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想18方程有两个不等实根,则的取值范围是 三、解答题19函数f(x)=sin2x+sinxcosx(1)求函数f(x)的递增区间;(2)当x0,时,求f(x)的值域20(本题12分)正项数列满足(1)求数列的通项公式;(2)令,求数列的前项和为.21(本小题满分16分) 给出定义在上的两个函数,. (1)若在处取最值求的值; (2)若函数在区间上单调递减,求实数的取值范围; (3)试确定函数的零点个数,并说明理由22已知函数f(x)=|2x1|+|2x+a|,g(x)=x+3(1)当a=2时,求不等式f(x)g(x)的解集;(2)设a,且当x,a时,f(x)g(x),求a的取值范围 23已知集合A=x|1x3,集合B=x|2mx1m(1)若AB,求实数m的取值范围;(2)若AB=,求实数m的取值范围24已知函数f(x)=|x10|+|x20|,且满足f(x)10a+10(aR)的解集不是空集()求实数a的取值集合A()若bA,ab,求证aabbabba 剑阁县第一中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 D【解析】解:设|PF1|=t,|PF1|=|PQ|,F1PQ=60,|PQ|=t,|F1Q|=t,由F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,椭圆的离心率为:e=故选D2 【答案】B【解析】解:an=(1)n(3n2),S11=()+(a2+a4+a6+a8+a10)=(1+7+13+19+25+31)+(4+10+16+22+28)=16,S20=(a1+a3+a19)+(a2+a4+a20)=(1+7+55)+(4+10+58)=+=30,S11+S20=16+30=14故选:B【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用3 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键4 【答案】D【解析】解:ABC中,A(5,0),B(5,0),点C在双曲线上,A与B为双曲线的两焦点,根据双曲线的定义得:|ACBC|=2a=8,|AB|=2c=10,则=故选:D【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目5 【答案】A【解析】解:l1:x+y7=0和l2:x+y5=0是平行直线,可判断:过原点且与直线垂直时,中的M到原点的距离的最小值直线l1:x+y7=0和l2:x+y5=0,两直线的距离为=,AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题6 【答案】D【解析】解:二项式(x+)4展开式的通项公式为Tr+1=x42r,令42r=0,解得r=2,展开式的常数项为6=a5,a3a7=a52=36,故选:D【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题7 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题8 【答案】B【解析】解:在等比数列an中,a1=3,公比q=2,a2=32=6,=384,a2和a8的等比中项为=48故选:B9 【答案】111【解析】考点:线线,线面,面面的位置关系10【答案】B【解析】解:向量ab=0,此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现故选B【点评】本题主要考查了直线与圆的位置关系可采用数形结合结合的方法较为直观11【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:+1=0,即1=,整理得:2sinAcosBcosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又A+B+C=180,sin(B+C)=sinA,可得2sinAcosB=sinA,sinA0,2cosB=1,即cosB=,则B=60故选:A【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键12【答案】B【解析】解:因为y=f(x)为奇函数,所以当x0时,x0,根据题意得:f(x)=f(x)=x+2,即f(x)=x2,当x0时,f(x)=x+2,代入所求不等式得:2(x+2)10,即2x3,解得x,则原不等式的解集为x;当x0时,f(x)=x2,代入所求的不等式得:2(x2)10,即2x5,解得x,则原不等式的解集为0x,综上,所求不等式的解集为x|x或0x故选B二、填空题13【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:214【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题15【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3所以系数为:故答案为:16【答案】(,) 【解析】解:,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:又|=2=(,)故答案为:(,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2)及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解17【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为1918【答案】【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,直线的图象恒过定点,结合图象,可知,当过点时,当直线与圆相切时,即,解得,所以实数的取值范围是.111考点:直线与圆的位置关系的应用【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.三、解答题19【答案】 【解析】解:(1)(2分)令解得f(x)的递增区间为(6分)(2),(8分),(10分)f(x)的值域是(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力20【答案】(1);(2).考点:1一元二次方程;2裂项相消法求和21【答案】(1) (2) (3)两个零点【解析】试题分析:(1) 开区间的最值在极值点取得,因此在处取极值,即 ,解得 ,需验证(2) 在区间上单调递减,转化为在区间上恒成立,再利用变量分离转化为对应函数最值:的最大值,根据分式函数求最值方法求得最大值2(3)先利用导数研究函数单调性:当时,递减,当时,递增;再考虑区间端点函数值的符号:, , ,结合零点存在定理可得零点个数试题解析:(1) 由已知,即: ,解得: 经检验 满足题意所以 4分因为,所以,所以所以,所以 10分(3)函数有两个零点因为所以 12分当时,当时,所以, 14分 , 故由零点存在定理可知: 函数在 存在一个零点,函数在 存在一个零点,所以函数有两个零点 16分考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等22【答案】 【解析】解:(1)由|2x1|+|2x+2|x+3,得:得x;得0x;得综上:不等式f(x)g(x)的解集为(2)a,x,a,f(x)=4x+a1由f(x)g(x)得:3x4a,即x依题意:,a(,a即a1a的取值范围是(,1 23【答案】 【解析】解:(1)由AB知:,得m2,即实数m的取值范围为(,2;(2)由AB=,得:若2m1m即m时,B=,符合题意;若2m1m即m时,需或,得0m或,即0m,综上知m0即实数m的取值范围为0,+)【点评】本题主要考查集合的包含关系判断及应用,交集及其运算解答(2)题时要分类讨论,以防错解或漏解24【答案】 【解析】解(1)要使不等式|x10|+|x20|10a+10的解集不是空集,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东中山大学附属口腔医院工勤事务岗工作人员(驾驶员)招聘1人模拟试卷及答案详解(夺冠系列)
- 小学防欺凌测试题及答案
- 工贸安全考试题及答案
- 告别诗考试题目及答案
- 高青网格员考试题及答案
- 企业人才招募分析模板及指南
- 合规操作流程承诺函9篇
- 2025年病案编码员资格证试题库(附答案)
- 2025年公共艺术音乐试卷及答案
- 数据资讯协作守秘承诺函6篇范文
- 奈雪的茶国际商业计划书
- DL-T 2594-2023 电力企业标准化工作 评价与改进
- 《血管活性药物静脉输注护理》标准解读
- 一道美丽的风景作文500字
- 个人简历模板表格式
- 现网终端问题分析报告
- 第十五章巷道与井筒施工测量
- GB/T 13384-2008机电产品包装通用技术条件
- FZ/T 07019-2021针织印染面料单位产品能源消耗限额
- 《计算机辅助翻译》课程教学大纲
- 电厂化学运行规程
评论
0/150
提交评论