




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷富平县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知复数z满足(3+4i)z=25,则=( )A34iB3+4iC34iD3+4i2 一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )(A) ( B ) (C) (D) 3 已知数列的首项为,且满足,则此数列的第4项是( )A1 B C. D4 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+5 下列4个命题:命题“若x2x=0,则x=1”的逆否命题为“若x1,则x2x0”;若“p或q”是假命题,则“p且q”是真命题;若p:x(x2)0,q:log2x1,则p是q的充要条件;若命题p:存在xR,使得2xx2,则p:任意xR,均有2xx2;其中正确命题的个数是( )A1个B2个C3个D4个6 f()=,则f(2)=( )A3B1C2D7 求值: =( )Atan 38BCD8 数列an的首项a1=1,an+1=an+2n,则a5=( )AB20C21D319 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD10在下面程序框图中,输入,则输出的的值是( )A B C D【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.11设Sn为等比数列an的前n项和,已知3S3=a42,3S2=a32,则公比q=( )A3B4C5D612江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45和30,而且两条船与炮台底部连线成30角,则两条船相距( )A10米B100米C30米D20米二、填空题13曲线y=x+ex在点A(0,1)处的切线方程是14某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种15若复数是纯虚数,则的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力16已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:(,)的渐近线恰好过点,则双曲线的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.17若函数f(x)=x2(2a1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是18(x)6的展开式的常数项是(应用数字作答)三、解答题19(本小题满分12分)已知向量满足:,.(1)求向量与的夹角;(2)求.20已知函数f(x)=sin2x+(12sin2x)()求f(x)的单调减区间;()当x,时,求f(x)的值域21(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号()求第一次或第二次取到3号球的概率;()设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望22已知斜率为1的直线l经过抛物线y2=2px(p0)的焦点F,且与抛物线相交于A,B两点,|AB|=4(I)求p的值;(II)若经过点D(2,1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围23在平面直角坐标系中,ABC各顶点的坐标分别为:A(0,4);B(3,0),C(1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程24已知点(1,)是函数f(x)=ax(a0且a1)的图象上一点,等比数列an的前n项和为f(n)c,数列bn(bn0)的首项为c,且前n项和Sn满足SnSn1=+(n2)记数列前n项和为Tn,(1)求数列an和bn的通项公式;(2)若对任意正整数n,当m1,1时,不等式t22mt+Tn恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1mn,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由 富平县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B解析:(3+4i)z=25,z=34i=3+4i故选:B2 【答案】A【解析】 根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于3 【答案】B【解析】 4 【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目5 【答案】C【解析】解:命题“若x2x=0,则x=1”的逆否命题为“若x1,则x2x0”,正确;若“p或q”是假命题,则p、q均为假命题,p、q均为真命题,“p且q”是真命题,正确;由p:x(x2)0,得0x2,由q:log2x1,得0x2,则p是q的必要不充分条件,错误;若命题p:存在xR,使得2xx2,则p:任意xR,均有2xx2,正确正确的命题有3个故选:C6 【答案】A【解析】解:f()=,f(2)=f()=3故选:A7 【答案】C【解析】解: =tan(49+11)=tan60=,故选:C【点评】本题主要考查两角和的正切公式的应用,属于基础题8 【答案】C【解析】解:由an+1=an+2n,得an+1an=2n,又a1=1,a5=(a5a4)+(a4a3)+(a3a2)+(a2a1)+a1=2(4+3+2+1)+1=21故选:C【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题9 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题10【答案】B11【答案】B【解析】解:Sn为等比数列an的前n项和,3S3=a42,3S2=a32,两式相减得3a3=a4a3,a4=4a3,公比q=4故选:B12【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45,设A处观测小船D的俯角为30,连接BC、BDRtABC中,ACB=45,可得BC=AB=30米RtABD中,ADB=30,可得BD=AB=30米在BCD中,BC=30米,BD=30米,CBD=30,由余弦定理可得:CD2=BC2+BD22BCBDcos30=900CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离着重考查了余弦定理、空间线面的位置关系等知识,属于中档题熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键二、填空题13【答案】2xy+1=0 【解析】解:由题意得,y=(x+ex)=1+ex,点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y1=2x,即2xy+1=0,故答案为:2xy+1=0【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题14【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏15【答案】【解析】由题意知,且,所以,则.16【答案】17【答案】a|或 【解析】解:二次函数f(x)=x2(2a1)x+a+1 的对称轴为 x=a,f(x)=x2(2a1)x+a+1是区间(1,2)上的单调函数,区间(1,2)在对称轴的左侧或者右侧,a2,或a1,a,或 a,故答案为:a|a,或 a【点评】本题考查二次函数的性质,体现了分类讨论的数学思想18【答案】160 【解析】解:由于(x)6展开式的通项公式为 Tr+1=(2)rx62r,令62r=0,求得r=3,可得(x)6展开式的常数项为8=160,故答案为:160【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题三、解答题19【答案】(1);(2)【解析】试题分析:(1)要求向量的夹角,只要求得这两向量的数量积,而由已知,结合数量积的运算法则可得,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式,把考点:向量的数量积,向量的夹角与模【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在内及余弦值求出两向量的夹角20【答案】 【解析】解:()f(x)=sin2x+(12sin2x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+),由2k+2x+2k+(kZ)得:k+xk+(kZ),故f(x)的单调减区间为:k+,k+(kZ);()当x,时,(2x+)0,2sin(2x+)0,2,所以,f(x)的值域为0,221【答案】 【解析】解:()事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,所求概率为(6分)() ,(9分)故的分布列为:012P (10分) (12分)22【答案】 【解析】解:(I)由题意可知,抛物线y2=2px(p0)的焦点坐标为,准线方程为所以,直线l的方程为由消y并整理,得设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1(II)由(I)可知,抛物线的方程为y2=2x由题意,直线m的方程为y=kx+(2k1)由方程组(1)可得ky22y+4k2=0(2)当k=0时,由方程(2),得y=1把y=1代入y2=2x,得这时直线m与抛物线只有一个公共点当k0时,方程(2)得判别式为=44k(4k2)由0,即44k(4k2)0,亦即4k22k10解得于是,当且k0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,因此,所求m的取值范围是【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题23【答案】 【解析】解(1),根据直线的斜截式方程,直线AB:,化成一般式为:4x3y+12=0,根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y7=0,AB边的高所在直线的方程为3x+4y7=024【答案】 【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=f(2)cf(1)c=,a3=f(3)cf(2)c=因为数列an是等比数列,所以,所以c=1又公比q=,所以;由题意可得: =,又因为bn0,所以;所以数列是以1为首项,以1为公差的等差数列,并且有;当n2时,bn=SnSn1=2n1;所以bn=2n1(2)因为数列前n项和为Tn,所以 =;因为当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年统编版(2024)小学语文三年级上册第一单元测试卷及答案
- 管理咨询公司合同付款管理办法
- 防暴反恐知识技能培训课件
- 城市文旅融合发展探索
- 2025年最简单土石方运输合同3篇
- 2025年高考政治总复习文化生活模块全套知识清单
- 知识图谱辅助关系抽取方法-洞察及研究
- 四川省成都市2025-2026学年七年级语文上学期第一次月考复习试卷(含答案)
- 2025-2026学年湖南省长沙市名校联考联合体高二(上)第一次联考(暨入学模拟考试)物理试卷(含答案)
- 部门生产安全培训纪要课件
- 《运动医学与康复》课件
- 河北建投集团招聘笔试题库2025
- 2025年自建房施工合同书 (包工不包料 C款)
- (高清版)DB33∕T 715-2018 公路泡沫沥青冷再生路面设计与施工技术规范
- 军事心理战试题及答案
- 托育园管理制度
- 2025年北京市第一次普通高中学业水平合格性考试历史试题(含答案)
- 2025年江西省高职单招文化统一考试真题及答案(网络版)
- 检验科消防安全知识培训
- 中国古代数学家求数列和的方法课件-高二上学期数学人教A版选择性
- 铁塔拆除施工方案
评论
0/150
提交评论