




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
姜堰区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()AB8CD2 已知函数f(x)=m(x)2lnx(mR),g(x)=,若至少存在一个x01,e,使得f(x0)g(x0)成立,则实数m的范围是( )A(,B(,)C(,0D(,0)3 函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,则的一个可能取值是( )A2B3C7D94 已知集合A=x|x0,且AB=B,则集合B可能是( )Ax|x0Bx|x1C1,0,1DR5 已知集合A=x|1x3,B=x|0xa,若AB,则实数a的范围是( )A3,+)B(3,+)C,3D,3)6 若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A1B2C3D47 在ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则ABC的面积是( )A16B6C4D88 已知命题p:对任意xR,总有3x0;命题q:“x2”是“x4”的充分不必要条件,则下列命题为真命题的是( )ApqBpqCpqDpq9 定义运算,例如若已知,则=( )ABCD10设集合,则( )A. B. C. D. 【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题11如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力12与椭圆有公共焦点,且离心率的双曲线方程为( )ABCD二、填空题13为了近似估计的值,用计算机分别产生90个在1,1的均匀随机数x1,x2,x90和y1,y2,y90,在90组数对(xi,yi)(1i90,iN*)中,经统计有25组数对满足,则以此估计的值为14当时,4xlogax,则a的取值范围15直线ax2y+2=0与直线x+(a3)y+1=0平行,则实数a的值为 16抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)17若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=18设f(x)是定义在R上的周期为2的函数,当x1,1)时,f(x)=,则f()=三、解答题19已知函数f(x)=(1)求f(f(2);(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(4,0)上的值域20(本题12分)正项数列满足(1)求数列的通项公式;(2)令,求数列的前项和为.21【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形,其设计创意如下:在长、宽的长方形中,将四边形沿直线翻折到(点是线段上异于的一点、点是线段上的一点),使得点落在线段上.(1)当点与点重合时,求面积;(2)经观察测量,发现当最小时,LOGO最美观,试求此时LOGO图案的面积.22(本小题满分10分)已知函数(1)若求不等式的解集;(2)若的解集包含,求实数的取值范围23(本小题满分16分) 在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式(,为常数),其中与成反比,与的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.(1) 求的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大(保留1位小数)24设函数f(x)=1+(1+a)xx2x3,其中a0()讨论f(x)在其定义域上的单调性;()当x时,求f(x)取得最大值和最小值时的x的值姜堰区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C2 【答案】 B【解析】解:由题意,不等式f(x)g(x)在1,e上有解,mx2lnx,即在1,e上有解,令h(x)=,则h(x)=,1xe,h(x)0,h(x)max=h(e)=,h(e)=,mm的取值范围是(,)故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用3 【答案】C【解析】解:函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,sin+acos=2,a=,f(x)=sinx+cosx=2sin(x+)再根据f()=2sin(+)=2,可得+=2k+,kZ,=12k+7,k=0时,=7,则的可能值为7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题4 【答案】A【解析】解:由A=x|x0,且AB=B,所以BAA、x|x0=x|x0=A,故本选项正确;B、x|x1,xR=(,10,+),故本选项错误;C、若B=1,0,1,则AB=0,1B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误故选:A【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题5 【答案】B【解析】解:集合A=x|1x3,B=x|0xa,若AB,则a3,故选:B【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题6 【答案】A【解析】解:f(x)=acosx,g(x)=x2+bx+1,f(x)=asinx,g(x)=2x+b,曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,f(0)=a=g(0)=1,且f(0)=0=g(0)=b,即a=1,b=0a+b=1故选:A【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题7 【答案】D【解析】解:a=5,b=4,cosC=,可得:sinC=,SABC=absinC=8故选:D8 【答案】D【解析】解:p:根据指数函数的性质可知,对任意xR,总有3x0成立,即p为真命题,q:“x2”是“x4”的必要不充分条件,即q为假命题,则pq为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础9 【答案】D【解析】解:由新定义可得, =故选:D【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题10【答案】D【解析】由绝对值的定义及,得,则,所以,故选D.11【答案】D【解析】12【答案】 A【解析】解:由于椭圆的标准方程为:则c2=132122=25则c=5又双曲线的离心率a=4,b=3又因为且椭圆的焦点在x轴上,双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m0,n0,mn),双曲线方程可设为mx2ny2=1(m0,n0,mn),由题目所给条件求出m,n即可二、填空题13【答案】 【解析】设A(1,1),B(1,1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题14【答案】 【解析】解:当时,函数y=4x的图象如下图所示若不等式4xlogax恒成立,则y=logax的图象恒在y=4x的图象的上方(如图中虚线所示)y=logax的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=logax的图象对应的底数a应满足a1故答案为:(,1)15【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值【解答】解:直线ax2y+2=0与直线x+(a3)y+1=0平行,解得 a=1故答案为 116【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键17【答案】5 【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|=5故答案为:5【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题18【答案】1 【解析】解:f(x)是定义在R上的周期为2的函数,=1故答案为:1【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”三、解答题19【答案】 【解析】解:(1)函数f(x)=f(2)=2+2=0,f(f(2)=f(0)=0.3分(2)函数的图象如图:单调增区间为(,1),(0,+)(开区间,闭区间都给分)由图可知:f(4)=2,f(1)=1,函数f(x)在区间(4,0)上的值域(2,112分20【答案】(1);(2).考点:1一元二次方程;2裂项相消法求和21【答案】(1);(2).【解析】试题分析:(1)设,利用题意结合勾股定理可得,则,据此可得的面积是;试题解析:(1)设,则,解之得,的面积是;(2)设,则,.,即,(且),(且),设,则,令得,列表得当时,取到最小值,此时,在中,在正中,在梯形中,.答:当最小时,LOGO图案面积为.点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.22【答案】(1);(2).【解析】试题分析:(1)当时,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为;(2)等价于,即在上恒成立,即.试题解析:(1)当时,即或或,解得或,不等式的解集为;考点:不等式选讲23【答案】(1) ()(2) 试题解析:(1) 因为与成反比,与的平方成正比, 所以可设:,则则 2分因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套所以,即,解得:, 6分所以, () 8分(2) 由(1)可知,套题每日的销售量, 答:当销售价格为元/套时,网校每日销售套题所获得的利润最大.16分考点:利用导数求函数最值24【答案】 【解析】解:()f(x)的定义域为(,+),f(x)=1+a2x3x2,由f(x)=0,得x1=,x2=,x1x2,由f(x)0得x,x;由f(x)0得x;故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省太原市晋源区三校2024-2025学年八年级下学期3月月考生物试题(含答案)
- 辽宁省抚顺市2024-2025学年七年级上学期10月月考道德与法治试卷(含答案)
- 2024-2025学年内蒙古鄂尔多斯市康巴什区八年级(上)期末数学试卷(含部分答案)
- 健身服务投诉处理机制-洞察及研究
- 基于拓扑优化的桥总成拓扑结构在极端工况下的静动态力学特性突变预警模型
- 基于工业4.0的分离齿合套智能化装配工艺与误差补偿系统研究
- 基于区块链技术的减速箱脂全球供应链质量追溯与风险预警平台设计
- 垂直领域知识图谱对割片精度的赋能机制
- 国际标准框架下多品牌交流钳表精度认证体系差异化困境
- 后疫情时代健康监测集成于门禁系统的伦理与成本博弈
- 小学四年级上册语文学历案 教学设计
- 医院感控试题及答案
- NCCN卵巢癌指南2025第1版解读课件
- 报关员考试商品编码习题
- 残疾人服务课件
- 2025-2030中国防脱发洗发水行业市场发展趋势与前景展望战略研究报告
- 2025年全国中学生汉字听写大会比赛题库及解析(共四套)
- 殡仪馆面试题及答案
- DB37-T 5312-2025 《建筑施工安全防护设施技术标准》
- 二手车寄售协议书范本
- 门诊挂号与预约管理制度
评论
0/150
提交评论