庆云县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
庆云县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
庆云县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
庆云县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
庆云县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

庆云县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2 设f(x)(exex)(),则不等式f(x)f(1x)的解集为( )A(0,) B(,)C(,) D(,0)3 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为()A B C D4 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形5 抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=26 抛物线y2=8x的焦点到双曲线的渐近线的距离为( )A1BCD7 函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)8 已知的终边过点,则等于( )A B C-5 D59 已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点10如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为( )ABCD11对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值12若如图程序执行的结果是10,则输入的x的值是( ) A0B10C10D10或10二、填空题13设函数则_;若,则的大小关系是_14若曲线f(x)=aex+bsinx(a,bR)在x=0处与直线y=1相切,则ba=15函数的单调递增区间是16已知函数在处取得极小值10,则的值为 17圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm的点A处有一点蜜糖A点正对面的外壁(不是A点的外壁)距杯底2cm的点B处有一小虫若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少cm(不计杯壁厚度与小虫的尺寸)18当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是三、解答题19(本小题满分13分)在四棱锥中,底面是梯形,为的中点()在棱上确定一点,使得平面;()若,求三棱锥的体积20如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离 21已知函数f(x)=,求不等式f(x)4的解集22某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)23已知函数()(1)求的单调区间和极值;(2)求在上的最小值(3)设,若对及有恒成立,求实数的取值范围24如图,已知边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点()试在棱AD上找一点N,使得CN平面AMP,并证明你的结论()证明:AMPM庆云县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A2 【答案】【解析】选C.f(x)的定义域为xR,由f(x)(exex)()得f(x)(exex)()(exex)()(exex)()f(x),f(x)在R上为偶函数,不等式f(x)f(1x)等价于|x|1x|,即x212xx2,x,即不等式f(x)f(1x)的解集为x|x,故选C.3 【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B4 【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah2rh当a=2r时截面面积最大,即轴截面面积最大,故A正确对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,截面三角形SAB的高为,截面面积S=故截面的最大面积为故B错误对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题5 【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置6 【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线渐近线为y=有点到直线距离公式可得:d=1故选A【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法其中应用到点到直线的距离公式,包含知识点多,属于综合性试题7 【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C8 【答案】B【解析】考点:三角恒等变换9 【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.10【答案】 D【解析】解:由题意,将AED沿AE折起,使平面AED平面ABC,在平面AED内过点D作DKAE,K为垂足,由翻折的特征知,连接DK,则DKA=90,故K点的轨迹是以AD为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK=,取O为AD的中点,得到OAK是正三角形故K0A=,K0D=,其所对的弧长为=,故选:D11【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B12【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x0,时x=10,解得:x=10当x0,时x=10,解得:x=10故选:D二、填空题13【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。故答案为:,14【答案】2 【解析】解:f(x)=aex+bsinx的导数为f(x)=aex+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=1相切,可得a+b=0,且ae0+bsin0=a=1,解得a=1,b=1,则ba=2故答案为:215【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)16【答案】考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f(x)求方程f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反.17【答案】10cm 【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A,则AA=4cm,BC=6cm,AC=8cm,AB=10cm故答案为:10【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决18【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:2三、解答题19【答案】(本小题满分13分)解:()当为的中点时,平面 (1分)连结、,那么, , (3分)又平面, 平面,平面 (5分)()设为的中点,连结、, 在直角三角形中,, 又,,,平面 (10分),三棱锥的体积 (13分)20【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NEMEAB,ABCD,MECD又NEOC,平面MNE平面OCDMN平面OCD(2)CDAB,MDC为异面直线AB与MD所成的角(或其补角)作APCD于P,连接MPOA平面ABCD,CDMP,所以AB与MD所成角的大小为(3)AB平面OCD,点A和点B到平面OCD的距离相等,连接OP,过点A作AQOP于点Q,APCD,OACD,CD平面OAP,AQCD又AQOP,AQ平面OCD,线段AQ的长就是点A到平面OCD的距离,所以点B到平面OCD的距离为方法二(向量法)作APCD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),O(0,0,2),M(0,0,1),(1),设平面OCD的法向量为n=(x,y,z),则=0, =0即取,解得=(,1)(0,4,)=0,MN平面OCD(2)设AB与MD所成的角为,AB与MD所成角的大小为(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d=所以点B到平面OCD的距离为【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力21【答案】 【解析】解:函数f(x)=,不等式f(x)4,当x1时,2x+44,解得1x0;当x1时,x+14解得3x1综上x(3,0)不等式的解集为:(3,0)22【答案】 【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k1x,g(x)=k2,(k1,k20;x0)由图知f(1)=,k1=又g(4)=,k2=从而f(x)=,g(x)=(x0)(2)设A产品投入x万元,则B产品投入10x万元,设企业的利润为y万元y=f(x)+g(10x)=,(0x10),令,(0t)当t=,ymax4,此时x=3.75当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题解题的关键是换元,利用二次函数的求最值的方法求解23【答案】(1)的单调递增区间为,单调递减区间为,无极大值;(2)时,时,时,;(3).【解析】(2)当,即时,在上递增,;当,即时,在上递减,;当,即时,在上递减,在上递增,(3),由,得,当时,;当时,在上递减,在递增,故,又,当时,对恒成立等价于;又对恒成立,故1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用.【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.24【答案】 【解析】()解:在棱AD上找中点N,连接CN,则CN平面AMP;证明:因为M为BC的中点,四边形ABCD是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论