长岭县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
长岭县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
长岭县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
长岭县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
长岭县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长岭县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 空间直角坐标系中,点A(2,1,3)关于点B(1,1,2)的对称点C的坐标为( )A(4,1,1)B(1,0,5)C(4,3,1)D(5,3,4)2 已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是( )A(0,1)B(0,C(0,)D,1)3 如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )ABCD4 不等式x(x1)2的解集是( )Ax|2x1Bx|1x2Cx|x1或x2Dx|x2或x15 设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或86 圆上的点到直线的距离最大值是( )A B C D7 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D28 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A92%B24%C56%D5.6%9 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )ABCD10如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图估计这批产品的中位数为( )A20B25C22.5D22.7511由直线与曲线所围成的封闭图形的面积为( )AB1CD12若ab,则下列不等式正确的是( )ABa3b3Ca2b2Da|b|二、填空题13设函数f(x)=,若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是14设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为15在(2x+)6的二项式中,常数项等于(结果用数值表示)16若直线:与直线:垂直,则 .17在空间直角坐标系中,设,且,则 .18设,记不超过的最大整数为,令.现有下列四个命题: 对任意的,都有恒成立;若,则方程的实数解为;若(),则数列的前项之和为;当时,函数的零点个数为,函数的零点个数为,则.其中的真命题有_.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。三、解答题19已知函数,()求函数的最大值;()若,求函数的单调递增区间20(本小题满分12分)中央电视台电视公开课开讲了需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.21已知曲线(,)在处的切线与直线平行(1)讨论的单调性;(2)若在,上恒成立,求实数的取值范围22.(1)求函数的单调递减区间;(2)在中,角的对边分别为,若,的面积为,求的最小值. 23已知数列an是各项均为正数的等比数列,满足a3=8,a3a22a1=0()求数列an的通项公式()记bn=log2an,求数列anbn的前n项和Sn24已知向量,满足|=1,|=2,与的夹角为120(1)求及|+|;(2)设向量+与的夹角为,求cos的值长岭县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:设C(x,y,z),点A(2,1,3)关于点B(1,1,2)的对称点C,解得x=4,y=3,z=1,C(4,3,1)故选:C2 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,=0,M点的轨迹是以原点O为圆心,半焦距c为半径的圆又M点总在椭圆内部,该圆内含于椭圆,即cb,c2b2=a2c2e2=,0e故选:C【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答3 【答案】 D【解析】解:设|AF1|=x,|AF2|=y,点A为椭圆C1: +y2=1上的点,2a=4,b=1,c=;|AF1|+|AF2|=2a=4,即x+y=4;又四边形AF1BF2为矩形,+=,即x2+y2=(2c)2=12,由得:,解得x=2,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|AF1|=yx=2,2n=2c=2,双曲线C2的离心率e=故选D【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题4 【答案】B【解析】解:x(x1)2,x2x20,即(x2)(x+1)0,1x2,即不等式的解集为x|1x2故选:B5 【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D6 【答案】【解析】试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,半径为1,所以距离的最大值是,故选B.考点:直线与圆的位置关系 17 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键8 【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.03210+0.02410=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是9 【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为故选:C10【答案】C【解析】解:根据频率分布直方图,得;0.025+0.045=0.30.5,0.3+0.085=0.70.5;中位数应在2025内,设中位数为x,则0.3+(x20)0.08=0.5,解得x=22.5;这批产品的中位数是22.5故选:C【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目11【答案】D【解析】由定积分知识可得,故选D。12【答案】B【解析】解:ab,令 a=1,b=2,代入各个选项检验可得:=1, =,显然A不正确a3=1,b3=6,显然 B正确 a2 =1,b2=4,显然C不正确a=1,|b|=2,显然D 不正确故选 B【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法二、填空题13【答案】a1或a2 【解析】解:当a=1时,f(x)=,当x1时,f(x)=2x1为增函数,f(x)1,当x1时,f(x)=4(x1)(x2)=4(x23x+2)=4(x)21,当1x时,函数单调递减,当x时,函数单调递增,故当x=时,f(x)min=f()=1,设h(x)=2xa,g(x)=4(xa)(x2a)若在x1时,h(x)=与x轴有一个交点,所以a0,并且当x=1时,h(1)=2a0,所以0a2,而函数g(x)=4(xa)(x2a)有一个交点,所以2a1,且a1,所以a1,若函数h(x)=2xa在x1时,与x轴没有交点,则函数g(x)=4(xa)(x2a)有两个交点,当a0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2a0时,即a2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是a1,或a214【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m215【答案】240 【解析】解:由(2x+)6,得=由63r=0,得r=2常数项等于故答案为:24016【答案】1【解析】试题分析:两直线垂直满足,解得,故填:1.考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,当两直线垂直时,需满足,当两直线平行时,需满足且,或是,当直线是斜截式直线方程时,两直线垂直,两直线平行时,.117【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算18【答案】【解析】对于,由高斯函数的定义,显然,是真命题;对于,由得,即.当 时,此时化为,方程无解;当 时,此时化为,所以或,即或,所以原方程无解.故是假命题;对于,(),所以数列的前项之和为,故是真命题;对于,由三、解答题19【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()由已知当,即, 时,()当时,递增即,令,且注意到函数的递增区间为20【答案】(1)甲,乙,丙,丁;(2).【解析】试题分析:(1)从这名学生中按照分层抽样的方式抽取名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的名学生中随机抽取两名学生的方法共有种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3. (2)设乙中3人为,丁中3人为,从这6名学生中随机选出2名学生发言的结果为,共15种, 这2名同学来自同一所大学的结果共6种,所以所求概率为.考点:1、分层抽样方法的应用;2、古典概型概率公式.21【答案】(1)在,上单调递增,在,上单调递减;(2).【解析】试题解析:(1)由条件可得,由,可得,由,可得解得或;由,可得解得或所以在,上单调递增,在,上单调递减(2)令,当,时,由,可得在,时恒成立,即,故只需求出的最小值和的最大值由(1)可知,在上单调递减,在上单调递增,故的最小值为,由可得在区间上恒成立,所以在上的最大值为,所以只需,所以实数的取值范围是.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题利用导数研究函数的单调性进一步求函数最值的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).22【答案】(1)();(2).【解析】试题分析:(1)根据可求得函数的单调递减区间;(2)由可得,再由三角形面积公式可得,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1),令,解得,的单调递减区间为().考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用23【答案】 【解析】解:()设数列an的公比为q,由an0可得q0,且a3a22a1=0,化简得q2q2=0,解得q=2或q=1(舍),a3=a1q2=4a1=8,a1=2,数列an是以首项和公比均为2的等比数列,an=2n;()由(I)知bn=log2an=n,anbn=n2n,Sn=121+222+323+(n1)2n1+n2n,2S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论