




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷密山市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设,在约束条件下,目标函数的最大值小于2,则的取值范围为( )A B C. D2 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD3 如图甲所示, 三棱锥 的高 ,分别在 和上,且,图乙的四个图象大致描绘了三棱锥的体积与的变化关系,其中正确的是( ) A B C. D11114 下列判断正确的是( )A不是棱柱B是圆台C是棱锥D是棱台5 若f(x)=x22x4lnx,则f(x)0的解集为( )A(0,+)B(1,0)(2,+)C(2,+)D(1,0)6 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为( )A4B5C6D7 7 函数的定义域为( )Ax|1x4Bx|1x4,且x2Cx|1x4,且x2Dx|x48 设曲线在点处的切线的斜率为,则函数的部分图象可以为( )A B C. D9 已知向量=(1,n),=(1,n2),若与共线则n等于( )A1BC2D410函数f(x)=sinx(0)在恰有11个零点,则的取值范围( )ACD时,函数f(x)的最大值与最小值的和为( )Aa+3B6C2D3a11=( )AiBiC1+iD1i12已知a,b都是实数,那么“a2b2”是“ab”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件二、填空题13函数的定义域是,则函数的定义域是_.11114【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为_15已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为2,则直线的方程为_.16直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.17【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数若有三个零点,则实数m的取值范围是_18如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是三、解答题19【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=ax2+lnx(aR)(1)当a=时,求f(x)在区间1,e上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)g(x)f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”已知函数.。若在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围20(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.(1)求,的概率;(2)记,求随机变量的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力21设函数f(x)=|xa|2|x1|()当a=3时,解不等式f(x)1;()若f(x)|2x5|0对任意的x1,2恒成立,求实数a的取值范围 22请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm)(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值23在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为(sin+cos)=1,曲线C2的参数方程为(为参数)()求曲线C1的直角坐标方程与曲线C2的普通方程;()试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由 24(本题满分12分)设向量,记函数.(1)求函数的单调递增区间;(2)在锐角中,角的对边分别为.若,求面积的最大值.密山市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线截距为,作,向可行域内平移,越向上,则的值越大,从而可得当直线直线过点时取最大值,可求得点的坐标可求的最大值,然后由解不等式可求的范围. 2 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题3 【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题. 4 【答案】C【解析】解:是底面为梯形的棱柱;的两个底面不平行,不是圆台;是四棱锥;不是由棱锥截来的,故选:C5 【答案】C【解析】解:由题,f(x)的定义域为(0,+),f(x)=2x2,令2x20,整理得x2x20,解得x2或x1,结合函数的定义域知,f(x)0的解集为(2,+)故选:C6 【答案】A 解析:模拟执行程序框图,可得S=0,n=0满足条,0k,S=3,n=1满足条件1k,S=7,n=2满足条件2k,S=13,n=3满足条件3k,S=23,n=4满足条件4k,S=41,n=5满足条件5k,S=75,n=6若使输出的结果S不大于50,则输入的整数k不满足条件5k,即k5,则输入的整数k的最大值为4故选:7 【答案】B【解析】解:要使函数有意义,只须,即,解得1x4且x2,函数f(x)的定义域为x|1x4且x2故选B8 【答案】A 【解析】试题分析:,为奇函数,排除B,D,令时,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法.9 【答案】A【解析】解:向量=(1,n),=(1,n2),且与共线1(n2)=1n,解之得n=1故选:A10【答案】A【解析】ACD恰有11个零点,可得56,求得1012,故选:A11【答案】 B【解析】解: =i故选:B【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力12【答案】D【解析】解:“a2b2”既不能推出“ab”;反之,由“ab”也不能推出“a2b2”“a2b2”是“ab”的既不充分也不必要条件故选D二、填空题13【答案】【解析】考点:函数的定义域.14【答案】【解析】15【答案】【解析】解析: 设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即.16【答案】【解析】17【答案】【解析】18【答案】甲 【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= (8790)2+(8990)2+(9090)2+(9190)2+(9390)2=4;乙的平均数是=(78+88+89+96+99)=90,方差是= (7890)2+(8890)2+(8990)2+(9690)2+(9990)2=53.2;,成绩较为稳定的是甲【解法二】根据茎叶图中的数据知,甲的5个数据分布在8793之间,分布相对集中些,方差小些;乙的5个数据分布在7899之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些故答案为:甲【点评】本题考查了平均数与方差的计算与应用问题,是基础题目三、解答题19【答案】(1) (2)a的范围是 .【解析】试题分析:(1)由题意得 f(x)=x2+lnx,f(x)在区间1,e上为增函数,即可求出函数的最值试题解析:(1)当 时,;对于x1,e,有f(x)0,f(x)在区间1,e上为增函数,(2)在区间(1,+)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)f(x)f2(x)令 0,对x(1,+)恒成立,且h(x)=f1(x)f(x)=0对x(1,+)恒成立,若 ,令p(x)=0,得极值点x1=1,当x2x1=1,即 时,在(x2,+)上有p(x)0,此时p(x)在区间(x2,+)上是增函数,并且在该区间上有p(x)(p(x2),+),不合题意;当x2x1=1,即a1时,同理可知,p(x)在区间(1,+)上,有p(x)(p(1),+),也不合题意;若 ,则有2a10,此时在区间(1,+)上恒有p(x)0,从而p(x)在区间(1,+)上是减函数;要使p(x)0在此区间上恒成立,只须满足 ,所以 a又因为h(x)=x+2a=0,h(x)在(1,+)上为减函数,h(x)h(1)=+2a0,所以a综合可知a的范围是,20【答案】【解析】(1)由,知,甲、乙、丙3个盒中的球数分别为0,1,2,此时的概率.(4分)21【答案】 【解析】解:()f(x)1,即|x3|2x2|1x时,3x+2x21,x0,0x1;1x3时,3x2x+21,x,1x;x3时,x32x+21,x21x,无解,所以f(x)1解集为0,()当x1,2时,f(x)|2x5|0可化为|xa|3,a3xa+3,1a4 22【答案】 【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30x),0x30(1)S=4ah=8x(30x)=8(x15)2+1800,当x=15时,S取最大值(2)V=a2h=2(x3+30x2),V=6x(20x),由V=0得x=20,当x(0,20)时,V0;当x(20,30)时,V0;当x=20时,包装盒容积V(cm3)最大,此时,即此时包装盒的高与底面边长的比值是23【答案】 【解析】解:()由曲线C1的极坐标方程为(sin+cos)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(为参数),可得它的普通方程为+y2=1()把曲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 气雾剂工岗位操作规程考核试卷及答案
- 中药露剂工新员工考核试卷及答案
- 版权代理服务模式分析报告
- 果蔬汁冷链物流冷链运输成本核算报告
- 松香改性反应工转正考核试卷及答案
- 小学信息技术六年级下册《第11课 手机指南辨方向》教学设计
- 冰糖加工工设备维护与保养考核试卷及答案
- 现代染整废水处理技术综述
- 第四节 二力平衡说课稿-2025-2026学年初中物理北师大版北京2024八年级全一册-北师大版北京2024
- 旅客票务个性化定制服务与实施策略
- 2024年河北石家庄交通投资发展集团有限责任公司招聘考试真题
- 公安援疆工作总结
- 湖南省益阳市2026届高三9月教学质量监测数学试题(含答案)
- 2025年大学生英语六级必考词汇表全部汇编(带音标)
- 脑干神经解剖定位
- FZ/T 52059-2021抗菌粘胶短纤维
- 医学课件-护理评估课件
- 幼儿园大班安全教育:《暴力玩具不能玩》 课件
- 26个英文字母大小写描红
- 养老院预算及成本管理制度
- DL∕T 1867-2018 电力需求响应信息交换规范
评论
0/150
提交评论