磐石市高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
磐石市高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
磐石市高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
磐石市高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
磐石市高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

磐石市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 给出函数,如下表,则的值域为( ) A B C D以上情况都有可能2 函数y=ecosx(x)的大致图象为( )ABCD3 函数f(x)=log2(3x1)的定义域为( )A1,+)B(1,+)C0,+)D(0,+)4 设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则PF1F2的面积等于( )ABC24D485 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD6 集合,是的一个子集,当时,若有,则称为的一个“孤立元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个A.4 B. 5 C.6 D.77 设函数,则有( )Af(x)是奇函数,Bf(x)是奇函数, y=bxCf(x)是偶函数Df(x)是偶函数,8 已知(0,),且sin+cos=,则tan=( )ABCD9 已知两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,则实数a等于( )A1或3B1或3C1或3D1或310i是虚数单位,计算i+i2+i3=( )A1B1CiDi11一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )AB(4+)CD12若偶函数y=f(x),xR,满足f(x+2)=f(x),且x0,2时,f(x)=1x,则方程f(x)=log8|x|在10,10内的根的个数为( )A12B10C9D8二、填空题13已知f(x)=,则ff(0)=14已知向量若,则( )ABC2D【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力15如图,ABC是直角三角形,ACB=90,PA平面ABC,此图形中有个直角三角形16圆心在原点且与直线相切的圆的方程为_ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.17设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机事件“”的概率为_.18已知点E、F分别在正方体的棱上,且,则面AEF与面ABC所成的二面角的正切值等于 .三、解答题19已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围20(本小题满分14分)设函数,(其中,).(1)若,求的单调区间;(2)若,讨论函数在上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.21在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C22(本小题满分12分)如图,在四棱锥中,底面是菱形,且点是棱的中点,平面与棱交于点(1)求证:;(2)若,且平面平面,求平面与平面所成的锐二面角的余弦值【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.23已知双曲线过点P(3,4),它的渐近线方程为y=x(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1|PF2|=41,求F1PF2的余弦值24已知数列an是等比数列,Sn为数列an的前n项和,且a3=3,S3=9()求数列an的通项公式;()设bn=log2,且bn为递增数列,若cn=,求证:c1+c2+c3+cn1磐石市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:故值域为.考点:复合函数求值2 【答案】C【解析】解:函数f(x)=ecosx(x,)f(x)=ecos(x)=ecosx=f(x),函数是偶函数,排除B、D选项令t=cosx,则t=cosx当0x时递减,而y=et单调递增,由复合函数的单调性知函数y=ecosx在(0,)递减,所以C选项符合,故选:C【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力3 【答案】D【解析】解:要使函数有意义,则3x10,即3x1,x0即函数的定义域为(0,+),故选:D【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础4 【答案】C【解析】解:F1(5,0),F2(5,0),|F1F2|=10,3|PF1|=4|PF2|,设|PF2|=x,则,由双曲线的性质知,解得x=6|PF1|=8,|PF2|=6,F1PF2=90,PF1F2的面积=故选C【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用5 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D6 【答案】C【解析】试题分析:根据题中“孤立元素”定义可知,若集合B中不含孤立元素,则必须没有三个连续的自然数存在,所有B的可能情况为:,共6个。故选C。考点:1.集合间关系;2.新定义问题。 7 【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称又f(x)=f(x),所以f(x)为偶函数而f()=f(x),故选C【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法8 【答案】D【解析】解:将sin+cos=两边平方得:(sin+cos)2=1+2sincos=,即2sincos=0,0,sincos0,(sincos)2=12sincos=,即sincos=,联立解得:sin=,cos=,则tan=故选:D9 【答案】A【解析】解:两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,所以=,解得 a=3,或a=1故选:A10【答案】A【解析】解:由复数性质知:i2=1故i+i2+i3=i+(1)+(i)=1故选A【点评】本题考查复数幂的运算,是基础题11【答案】 D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,几何体的体积是=,故选D【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察12【答案】D【解析】解:函数y=f(x)为偶函数,且满足f(x+2)=f(x),f(x+4)=f(x+2+2)=f(x+2)=f(x),偶函数y=f(x)为周期为4的函数,由x0,2时,f(x)=1x,可作出函数f(x)在10,10的图象,同时作出函数f(x)=log8|x|在10,10的图象,交点个数即为所求数形结合可得交点个为8,故选:D二、填空题13【答案】1 【解析】解:f(0)=01=1,ff(0)=f(1)=21=1,故答案为:1【点评】本题考查了分段函数的简单应用14【答案】A【解析】15【答案】4 【解析】解:由PA平面ABC,则PAC,PAB是直角三角形,又由已知ABC是直角三角形,ACB=90所以BCAC,从而易得BC平面PAC,所以BCPC,所以PCB也是直角三角形,所以图中共有四个直角三角形,即:PAC,PAB,ABC,PCB故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键16【答案】【解析】由题意,圆的半径等于原点到直线的距离,所以,故圆的方程为.17【答案】【解析】解析:本题考查几何概率的计算与切线斜率的计算,由得,随机事件“”的概率为18【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。三、解答题19【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m20【答案】【解析】(1),.(2分)令,得.当时,当时,所以的单调增区间是,单调减区间是.(5分)若,则,又,由零点存在定理,使,所以在上单调增,在上单调减.又,.故当时,此时在上有两个零点;当时,此时在上只有一个零点. 21【答案】 【解析】解:()由题意知,tanA=,则=,即有sinAsinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;()因为三角形ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,由余弦定理得, =,由得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0C,则C+,即C+=,解得C= 【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题22【答案】【解析】平面,是平面的一个法向量,23【答案】 【解析】解:(1)设双曲线的方程为y2x2=(0),代入点P(3,4),可得=16,所求求双曲线的标准方程为(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,又由双曲线的几何性质知|d1d2|=2a=6,d12+d222d1d2=36即有d12+d22=36+2d1d2=118,又|F1F2|=2c=10,|F1F2|2=100=d12+d222d1d2cosF1PF2cosF1PF2=【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求F1PF2的余弦值着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题24【答案】已知数列an是等比数列,Sn为数列an的前n项和,且a3=3,S3=9()求数列an的通项公式;()设bn=log2,且bn为递增数列,若cn=,求证:c1+c2+c3+cn1【考点】数列的求和;等比数列的通项公式【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列【分析】()设数列an的公比为q,从而可得3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论