龙游县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
龙游县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
龙游县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
龙游县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
龙游县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷龙游县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数在定义域上的导函数是,若,且当时,设,则( )A B C D2 函数y=x3x2x的单调递增区间为( )ABCD3 已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD4 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD5 设a=sin145,b=cos52,c=tan47,则a,b,c的大小关系是( )AabcBcbaCbacDacb6 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD7 在中,则等于( )A B C或 D28 已知集合A,B,C中,AB,AC,若B=0,1,2,3,C=0,2,4,则A的子集最多有( )A2个B4个C6个D8个9 已知数列an是等比数列前n项和是Sn,若a2=2,a3=4,则S5等于( )A8B8C11D1110若f(x)=sin(2x+),则“f(x)的图象关于x=对称”是“=”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件11函数f(x)=3x+x3的零点所在的区间是( )A(0,1)B(1,2)C(2.3)D(3,4)12(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在0,的图象大致为( )ABCD二、填空题13以点(1,3)和(5,1)为端点的线段的中垂线的方程是14=15已知含有三个实数的集合既可表示成,又可表示成,则 .16已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是17等差数列中,公差,则使前项和取得最大值的自然数是_.18已知|=1,|=2,与的夹角为,那么|+|=三、解答题19已知双曲线C:与点P(1,2)(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由20已知函数f(x)=ax(a0且a1)的图象经过点(2,)(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x0)的值域21已知全集U为R,集合A=x|0x2,B=x|x3,或x1求:(I)AB;(II)(CUA)(CUB);(III)CU(AB)22已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 23已知ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求ABC的面积24(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆的极坐标方程为,点为其左、右焦点,直线的参数方程为(为参数,).(1)求直线和曲线的普通方程;(2)求点到直线的距离之和.龙游县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】考点:函数的对称性,导数与单调性【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数满足:或,则其图象关于直线对称,如满足,则其图象关于点对称2 【答案】A【解析】解:y=x3x2x,y=3x22x1,令y0 即3x22x1=(3x+1)(x1)0 解得:x或x1故函数单调递增区间为,故选:A【点评】本题主要考查导函数的正负和原函数的单调性的关系属基础题3 【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题4 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题5 【答案】A【解析】解:a=sin145=sin35,b=cos52=sin38,c=tan47tan45=1,y=sinx在(0,90)单调递增,sin35sin38sin90=1,abc故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题6 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题7 【答案】C【解析】考点:余弦定理8 【答案】B【解析】解:因为B=0,1,2,3,C=0,2,4,且AB,AC;ABC=0,2集合A可能为0,2,即最多有2个元素,故最多有4个子集故选:B9 【答案】D【解析】解:设an是等比数列的公比为q,因为a2=2,a3=4,所以q=2,所以a1=1,根据S5=11故选:D【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题10【答案】B【解析】解:若f(x)的图象关于x=对称,则2+=+k,解得=+k,kZ,此时=不一定成立,反之成立,即“f(x)的图象关于x=对称”是“=”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键11【答案】A【解析】解:f(0)=20,f(1)=10,由零点存在性定理可知函数f(x)=3x+x3的零点所在的区间是(0,1)故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题12【答案】 C【解析】解:在直角三角形OMP中,OP=1,POM=x,则OM=|cosx|,点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用二、填空题13【答案】xy2=0 【解析】解:直线AB的斜率 kAB=1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB的中垂线得方程为y1=x3即xy2=0,故答案为xy2=0【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程14【答案】2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题15【答案】-1【解析】试题分析:由于,所以只能,所以。考点:集合相等。16【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题17【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以,所以,所以取得最大值时的自然数是或考点:等差数列的性质【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个易错点18【答案】 【解析】解:|=1,|=2,与的夹角为,=1=1|+|=故答案为:【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点当直线l的斜率存在时,设直线l的方程为y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0 (*)()当2k2=0,即k=时,方程(*)有一个根,l与C有一个交点所以l的方程为()当2k20,即k时=2(k22k)24(2k2)(k2+4k6)=16(32k),当=0,即32k=0,k=时,方程(*)有一个实根,l与C有一个交点所以l的方程为3x2y+1=0综上知:l的方程为x=1或或3x2y+1=0(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12y12=2,2x22y22=2,两式相减得2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=4,2(x1x2)=4(y1y2)即kAB=,直线AB的方程为y2=(x1),代入双曲线方程2x2y2=2,可得,15y248y+34=0,由于判别式为482415340,则该直线AB存在 【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题20【答案】 【解析】解:(1)f(x)=ax(a0且a1)的图象经过点(2,),a2=,a=(2)f(x)=()x在R上单调递减,又2b2+2,f(2)f(b2+2),(3)x0,x22x1,()1=30f(x)(0,321【答案】 【解析】解:如图:(I)AB=x|1x2;(II)CUA=x|x0或x2,CUB=x|3x1(CUA)(CUB)=x|3x0;(III)AB=x|x3或x0,CU(AB)=x|3x0【点评】本题考查集合的运算问题,考查数形集合思想解题属基本运算的考查22【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 23【答案】 【解析】解:由题意设a=n、b=n+1、c=n+2(nN+),最大角是最小角的2倍,C=2A,由正弦定理得,则,得c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论