奉贤区二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
奉贤区二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
奉贤区二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
奉贤区二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
奉贤区二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷奉贤区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知函数f(x)=2x,则f(x)=( )A2xB2xln2C2x+ln2D2 设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为( )A1BCD3 已知函数,则曲线在点处切线的斜率为( )A1 B C2 D4 函数f(x)=lnx+1的图象大致为( )ABCD5 曲线y=在点(1,1)处的切线方程为( )Ay=x2By=3x+2Cy=2x3Dy=2x+16 命题“aR,函数y=”是增函数的否定是( )A“aR,函数y=”是减函数B“aR,函数y=”不是增函数C“aR,函数y=”不是增函数D“aR,函数y=”是减函数7 “x24x0”的一个充分不必要条件为( )A0x4B0x2Cx0Dx48 若函数的定义域是,则函数的定义域是( )A B C D9 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A1BC2D410如图,四面体DABC的体积为,且满足ACB=60,BC=1,AD+=2,则四面体DABC中最长棱的长度为( )AB2CD311双曲线=1(mZ)的离心率为( )AB2CD312定义某种运算S=ab,运算原理如图所示,则式子+的值为( )A4B8C10D13二、填空题13设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为,则此双曲线的标准方程是 .14已知函数f(x)=(2x+1)ex,f(x)为f(x)的导函数,则f(0)的值为15已知某几何体的三视图如图所示,则该几何体的体积为16已知为钝角,sin(+)=,则sin()=17不等式的解集为18已知平面向量,的夹角为,向量,的夹角为,则与的夹角为_,的最大值为 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19已知f(x)=x23ax+2a2(1)若实数a=1时,求不等式f(x)0的解集;(2)求不等式f(x)0的解集20(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.21已知a0,a1,设p:函数y=loga(x+3)在(0,+)上单调递减,q:函数y=x2+(2a3)x+1的图象与x轴交于不同的两点如果pq真,pq假,求实数a的取值范围22(本小题满分12分)如图,在四棱锥中,底面是菱形,且点是棱的中点,平面与棱交于点(1)求证:;(2)若,且平面平面,求平面与平面所成的锐二面角的余弦值【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.23已知函数f(x)=2|x2|+ax(xR)(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)2存在零点,求a的取值范围24已知曲线(,)在处的切线与直线平行(1)讨论的单调性;(2)若在,上恒成立,求实数的取值范围奉贤区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:f(x)=2x,则f(x)=2xln2,故选:B【点评】本题考查了导数运算法则,属于基础题2 【答案】D【解析】解:设函数y=f(x)g(x)=x2lnx,求导数得=当时,y0,函数在上为单调减函数,当时,y0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+)上x2lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值3 【答案】A【解析】试题分析:由已知得,则,所以考点:1、复合函数;2、导数的几何意义.4 【答案】A【解析】解:f(x)=lnx+1,f(x)=,f(x)在(0,4)上单调递增,在(4,+)上单调递减;且f(4)=ln42+1=ln410;故选A【点评】本题考查了导数的综合应用及函数的图象的应用5 【答案】D【解析】解:y=()=,k=y|x=1=2l:y+1=2(x1),则y=2x+1故选:D6 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“aR,函数y=”是增函数的否定是:“aR,函数y=”不是增函数故选:C【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题7 【答案】B【解析】解:不等式x24x0整理,得x(x4)0不等式的解集为A=x|0x4,因此,不等式x24x0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集写出一个使不等式x24x0成立的充分不必要条件可以是:0x2,故选:B8 【答案】B 【解析】9 【答案】B【解析】解:设圆柱的高为h,则V圆柱=12h=h,V球=,h=故选:B10【答案】 B【解析】解:因为AD(BCACsin60)VDABC=,BC=1,即AD1,因为2=AD+2=2,当且仅当AD=1时,等号成立,这时AC=,AD=1,且AD面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2故选B【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题11【答案】B【解析】解:由题意,m240且m0,mZ,m=1双曲线的方程是y2x2=1a2=1,b2=3,c2=a2+b2=4a=1,c=2,离心率为e=2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b212【答案】 C【解析】解:模拟执行程序,可得,当ab时,则输出a(b+1),反之,则输出b(a+1),2tan=2,lg=1,(2tan)lg=(2tan)(lg+1)=2(1+1)=0,lne=1,()1=5,lne()1=()1(lne+1)=5(1+1)=10,+=0+10=10故选:C二、填空题13【答案】【解析】试题分析:由题意可知椭圆的焦点在轴上,且,故焦点坐标为由双曲线的定义可得,故,故所求双曲线的标准方程为故答案为:考点:双曲线的简单性质;椭圆的简单性质14【答案】3 【解析】解:f(x)=(2x+1)ex,f(x)=2ex+(2x+1)ex,f(0)=2e0+(20+1)e0=2+1=3故答案为:315【答案】 【解析】解:由三视图可知几何体为四棱锥,其中底面是边长为1的正方形,有一侧棱垂直与底面,高为2棱锥的体积V=故答案为16【答案】 【解析】解:sin(+)=,cos()=cos(+)=sin(+)=,为钝角,即,sin()0,sin()=,故答案为:【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号17【答案】(0,1 【解析】解:不等式,即,求得0x1,故答案为:(0,1【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题18【答案】,. 【解析】三、解答题19【答案】 【解析】解:(1)当a=1时,依题意得x23x+20因式分解为:(x2)(x1)0,解得:x1或x21x2不等式的解集为x|1x2(2)依题意得x23ax+2a20(xa)(x2a)0对应方程(xa)(x2a)=0得x1=a,x2=2a当a=0时,x当a0时,a2a,ax2a;当a0时,a2a,2axa;综上所述,当a=0时,原不等式的解集为;当a0时,原不等式的解集为x|ax2a;当a0时,原不等式的解集为x|2axa;20【答案】(1);(2).考点:等差,等比数列通项公式,数列求和.21【答案】 【解析】解:由题意得命题P真时0a1,命题q真时由(2a3)240解得a或a,由pq真,pq 假,得,p,q一真一假 即:或,解得a1或a【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题22【答案】【解析】平面,是平面的一个法向量,23【答案】 【解析】解:(1)当a=1时,f(x)=2|x2|+x=(2分)所以,f(x)在(,2)递减,在2,+)递增,故最小值为f(2)=2; (4分)(2)f(x)=,(6分)要使函数f(x)有最小值,需,2a2,(8分)故a的取值范围为2,2(9分)(3)sinx1,1,f(sinx)=(a2)sinx+4,“h(x)=f(sinx)2=(a2)sinx+2存在零点”等价于“方程(a2)sinx+2=0有解”,亦即有解,(11分)解得a0或a4,(13分)a的取值范围为(,04,+)(14分)【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键24【答案】(1)在,上单调递增,在,上单调递减;(2).【解析】试题解析:(1)由条件可得,由,可得,由,可得解得或;由,可得解得或所以在,上单调递增,在,上单调递减(2)令,当,时,由,可得在,时恒成立,即,故只需求出的最小值和的最大值由(1)可知,在上单调递减,在上单调递增,故的最小值为,由可得在区间上恒成立,所以在上的最大值为,所以只需,所以实数的取值范围是.考点:1、利用导数研究

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论