




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
清镇市高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.2 若f(x)为定义在区间G上的任意两点x1,x2和任意实数(0,1),总有f(x1+(1)x2)f(x1)+(1)f(x2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )f(x)=,f(x)=,f(x)=,f(x)=A4B3C2D13 若某算法框图如图所示,则输出的结果为( )A7B15C31D634 在中,其面积为,则等于( )A B C D5 若复数的实部与虚部相等,则实数等于( )(A) ( B ) (C) (D) 6 函数g(x)是偶函数,函数f(x)=g(xm),若存在(,),使f(sin)=f(cos),则实数m的取值范围是( )A()B(,C()D(7 函数y=ecosx(x)的大致图象为( )ABCD8 若函数f(x)=loga(2x2+x)(a0且a1)在区间(0,)内恒有f(x)0,则f(x)的单调递增区间为( )A(,)B(,+)C(0,+)D(,)9 已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为( )A B C D10若a0,b0,a+b=1,则y=+的最小值是( )A2B3C4D511函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )Aex+1Bex1Cex+1Dex112若函数f(x)是奇函数,且在(0,+)上是增函数,又f(3)=0,则(x2)f(x)0的解集是( )A(3,0)(2,3)B(,3)(0,3)C(,3)(3,+)D(3,0)(2,+)二、填空题13在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是14不等式的解为15在等差数列中,公差为,前项和为,当且仅当时取得最大值,则的取值范围为_.16已知直线l:axby1=0(a0,b0)过点(1,1),则ab的最大值是17如果定义在R上的函数f(x),对任意x1x2都有x1f(x1)+x2f(x2)x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数f(x)=3x+1 f(x)=()x+1f(x)=x2+1 f(x)=其中是“H函数”的有(填序号)18命题“若a0,b0,则ab0”的逆否命题是(填“真命题”或“假命题”)三、解答题19(本题满分12分)已知向量,记函数.(1)求函数的单调递增区间;(2)在中,角的对边分别为且满足,求的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.20已知函数,(1)判断的单调性并且证明;(2)求在区间上的最大值和最小值21已知椭圆G: =1(ab0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(3,2)()求椭圆G的方程;()求PAB的面积22如图,菱形ABCD的边长为2,现将ACD沿对角线AC折起至ACP位置,并使平面PAC平面ABC ()求证:ACPB;()在菱形ABCD中,若ABC=60,求直线AB与平面PBC所成角的正弦值;()求四面体PABC体积的最大值23在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(2)设点是曲线上的一个动点,求它到直线的距离的最小值。24某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形()求出f(5);()利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式清镇市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.2 【答案】C【解析】解:由区间G上的任意两点x1,x2和任意实数(0,1),总有f(x1+(1)x2)f(x1)+(1)f(x2),等价为对任意xG,有f(x)0成立(f(x)是函数f(x)导函数的导函数),f(x)=的导数f(x)=,f(x)=,故在(2,3)上大于0恒成立,故为“上进”函数;f(x)=的导数f(x)=,f(x)=0恒成立,故不为“上进”函数;f(x)=的导数f(x)=,f(x)=0恒成立,故不为“上进”函数;f(x)=的导数f(x)=,f(x)=,当x(2,3)时,f(x)0恒成立故为“上进”函数故选C【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题3 【答案】 D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A5,B=3,A=2满足条件A5,B=7,A=3满足条件A5,B=15,A=4满足条件A5,B=31,A=5满足条件A5,B=63,A=6不满足条件A5,退出循环,输出B的值为63故选:D【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题4 【答案】B【解析】试题分析:由题意得,三角形的面积,所以,又,所以,又由余弦定理,可得,所以,则,故选B考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题5 【答案】C 【解析】 i,因为实部与虚部相等,所以2b12b,即b.故选C.6 【答案】A【解析】解:函数g(x)是偶函数,函数f(x)=g(xm),函数f(x)关于x=m对称,若(,),则sincos,则由f(sin)=f(cos),则=m,即m=(sin+cos)=sin(+)当(,),则+(,),则sin(+),则m,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键7 【答案】C【解析】解:函数f(x)=ecosx(x,)f(x)=ecos(x)=ecosx=f(x),函数是偶函数,排除B、D选项令t=cosx,则t=cosx当0x时递减,而y=et单调递增,由复合函数的单调性知函数y=ecosx在(0,)递减,所以C选项符合,故选:C【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力8 【答案】D【解析】解:当x(0,)时,2x2+x(0,1),0a1,函数f(x)=loga(2x2+x)(a0,a1)由f(x)=logat和t=2x2+x复合而成,0a1时,f(x)=logat在(0,+)上是减函数,所以只要求t=2x2+x0的单调递减区间t=2x2+x0的单调递减区间为(,),f(x)的单调增区间为(,),故选:D【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件9 【答案】C 【解析】解析:本题考查等比数列的通项公式与前项和公式,,,数列的前项和为,选C10【答案】C【解析】解:a0,b0,a+b=1,y=+=(a+b)=2+=4,当且仅当a=b=时取等号y=+的最小值是4故选:C【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题11【答案】D【解析】解:函数y=ex的图象关于y轴对称的图象的函数解析式为y=ex,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex的图象关于y轴对称,所以函数f(x)的解析式为y=e(x+1)=ex1即f(x)=ex1故选D12【答案】A【解析】解:f(x)是R上的奇函数,且在(0,+)内是增函数,在(,0)内f(x)也是增函数,又f(3)=0,f(3)=0当x(,3)(0,3)时,f(x)0;当x(3,0)(3,+)时,f(x)0;(x2)f(x)0的解集是(3,0)(2,3)故选:A二、填空题13【答案】 【解析】解:由题设知C41p(1p)3C42p2(1p)2,解得p,0p1,故答案为:14【答案】x|x1或x0 【解析】解:即即x(x1)0解得x1或x0故答案为x|x1或x0【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出15【答案】【解析】试题分析:当且仅当时,等差数列的前项和取得最大值,则,即,解得:.故本题正确答案为.考点:数列与不等式综合.16【答案】 【解析】解:直线l:axby1=0(a0,b0)过点(1,1),a+b1=0,即a+b=1,ab=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题17【答案】 【解析】解:对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)x1f(x2)+x2f(x1)恒成立,不等式等价为(x1x2)f(x1)f(x2)0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);f(x)在R递增,符合题意;f(x)在R递减,不合题意;f(x)在(,0)递减,在(0,+)递增,不合题意;f(x)在R递增,符合题意;故答案为:18【答案】真命题 【解析】解:若a0,b0,则ab0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键三、解答题19【答案】【解析】(1)由题意知,3分令,则可得,.的单调递增区间为().5分20【答案】(1)增函数,证明见解析;(2)最小值为,最大值为.【解析】试题分析:(1)在上任取两个数,则有,所以在上是增函数;(2)由(1)知,最小值为,最大值为.试题解析:在上任取两个数,则有,所以在上是增函数所以当时,当时,.考点:函数的单调性证明【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数,然后作差,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.121【答案】 【解析】解:()由已知得,c=,解得a=,又b2=a2c2=4,所以椭圆G的方程为()设直线l的方程为y=x+m,由得4x2+6mx+3m212=0设A,B的坐标分别为(x1,y1),(x2,y2)(x1x2),AB的中点为E(x0,y0),则x0=,y0=x0+m=,因为AB是等腰PAB的底边,所以PEAB,所以PE的斜率k=,解得m=2此时方程为4x2+12x=0解得x1=3,x2=0,所以y1=1,y2=2,所以|AB|=3,此时,点P(3,2)到直线AB:y=x+2距离d=,所以PAB的面积s=|AB|d=22【答案】 【解析】解:()证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,PA=PC,BA=BC,POAC,BOAC,又POBO=O,AC平面POB,又PB平面POB,ACPB()平面PAC平面ABC,平面PAC平面ABC=AC,PO平面PAC,POAC,PO面ABC,OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,ABC=60,菱形ABCD的边长为2,设平面PBC的法向量,直线AB与平面PBC成角为,取x=1,则,于是,直线AB与平面PBC成角的正弦值为()法一:设ABC=APC=,(0,),又PO平面ABC, =(),当且仅当,即时取等号,四面体PABC体积的最大值为法二:设ABC=APC=,(0,),又PO平面ABC,=(),设,则,且0t1,当时,VPABC0,当时,VPABC0,当时,VPABC取得最大值,四面体PABC体积的最大值为法三:设PO=x,则BO=x,(0x2)又PO平面ABC,当且仅当x2=82x2,即时取等号,四面体PABC体积的最大值为【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养23【答案】(1)点P在直线上(2)【解析】(1)把极坐标系下的点化为直角坐标,得P(0,4)。因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,(2)因为点Q在曲
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 谱细胞抗体鉴定技术体系
- 秦汉时期名医成就与医学发展
- 先进特钢制造技术
- 我的秘密课文讲解
- 汽车设计核心要点解析
- 牙周病检查与诊断技术
- 软件销售年度汇报
- 人体器官大脑讲解
- 人工智能算法核心功能使用方法详解
- 胸心外科诊疗指南解读
- GB/T 8243.14-2020内燃机全流式机油滤清器试验方法第14部分:复合材料滤清器的冷起动模拟和液压脉冲耐久试验
- GB/T 20470-2006临床实验室室间质量评价要求
- 加强即时检测的临床应用管理
- 《大学》教学讲解课件
- DB32∕T 4108-2021 混凝土复合保温砌块(砖)墙体自保温系统应用技术规程
- 第六章第二节供应过程的核算课件
- 三甲医院医疗退费管理制度
- 数学人教A版(2019)选择性必修第一册2.5.1 直线与圆的位置关系 教案
- J-STD-020D[1].1中文版
- SF∕T 0124-2021 录像过程分析技术规范
- 四讲业主业主大会业主委员会PPT课件
评论
0/150
提交评论