北安市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
北安市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
北安市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
北安市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
北安市高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北安市高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 过点,的直线的斜率为,则( )A B C D2 抛物线y2=8x的焦点到双曲线的渐近线的距离为( )A1BCD3 棱台的两底面面积为、,中截面(过各棱中点的面积)面积为,那么( )A B C D4 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力5 若集合M=y|y=2x,x1,N=x|0,则 NM( )A(11,B(0,1C1,1D(1,26 设,为正实数,则=( )A. B. C. D.或【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.7 某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种8 已知点P是抛物线y2=2x上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )A3BCD9 过点(0,2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( )ABCD10在ABC中,则这个三角形一定是( )A等腰三角形B直角三角形C等腰直角三角D等腰或直角三角形11执行下面的程序框图,若输入,则输出的结果为( )A2015 B2016 C2116 D204812在ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则ABC的面积是( )A16B6C4D8二、填空题13已知函数,则_;的最小值为_14一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为15抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)16等比数列an的公比q=,a6=1,则S6=17设函数f(x)=,若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是18已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=三、解答题19如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E()求证:AE=EB;()若EFFC=,求正方形ABCD的面积 20已知函数f(x)=exax1(a0,e为自然对数的底数)(1)求函数f(x)的最小值;(2)若f(x)0对任意的xR恒成立,求实数a的值21设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=af(x)1(a0且a1)()求k的值;()求g(x)在1,2上的最大值;()当时,g(x)t22mt+1对所有的x1,1及m1,1恒成立,求实数t的取值范围22(本小题满分12分)已知函数.(1)求函数在上的最大值和最小值;(2)在中,角所对的边分别为,满足,求的值.111123(本小题满分12分)已知函数()(1)当时,求函数在上的最大值和最小值;(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;24如图,在直三棱柱ABCA1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点(1)求证:ACBC1;( 2)求证:AC1平面CDB1北安市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】【解析】考点:1.斜率;2.两点间距离.2 【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线渐近线为y=有点到直线距离公式可得:d=1故选A【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法其中应用到点到直线的距离公式,包含知识点多,属于综合性试题3 【答案】A【解析】试题分析:不妨设棱台为三棱台,设棱台的高为上部三棱锥的高为,根据相似比的性质可得:,解得,故选A考点:棱台的结构特征4 【答案】B【解析】5 【答案】B【解析】解:由M中y=2x,x1,得到0y2,即M=(0,2,由N中不等式变形得:(x1)(x+1)0,且x+10,解得:1x1,即N=(1,1,则MN=(0,1,故选:B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键6 【答案】B.【解析】,故,而事实上,故选B.7 【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式8 【答案】B【解析】解:依题设P在抛物线准线的投影为P,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|MF|=即有当M,P,F三点共线时,取得最小值,为故选:B【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想9 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx2,即kxy2=0,若过点(0,2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d1,即1,即k230,解得k或k,即且,综上所述,故选:A10【答案】A【解析】解:,又cosC=,=,整理可得:b2=c2,解得:b=c即三角形一定为等腰三角形故选:A11【答案】D【解析】试题分析:由于,由程序框图可得对循环进行加运算,可以得到,从而可得,由于,则进行循环,最终可得输出结果为1考点:程序框图12【答案】D【解析】解:a=5,b=4,cosC=,可得:sinC=,SABC=absinC=8故选:D二、填空题13【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为: 14【答案】300 【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15=300故答案为:300【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目15【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键16【答案】21 【解析】解:等比数列an的公比q=,a6=1,a1()5=1,解得a1=32,S6=21故答案为:2117【答案】a1或a2 【解析】解:当a=1时,f(x)=,当x1时,f(x)=2x1为增函数,f(x)1,当x1时,f(x)=4(x1)(x2)=4(x23x+2)=4(x)21,当1x时,函数单调递减,当x时,函数单调递增,故当x=时,f(x)min=f()=1,设h(x)=2xa,g(x)=4(xa)(x2a)若在x1时,h(x)=与x轴有一个交点,所以a0,并且当x=1时,h(1)=2a0,所以0a2,而函数g(x)=4(xa)(x2a)有一个交点,所以2a1,且a1,所以a1,若函数h(x)=2xa在x1时,与x轴没有交点,则函数g(x)=4(xa)(x2a)有两个交点,当a0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2a0时,即a2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是a1,或a218【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题三、解答题19【答案】 【解析】证明:()以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EFEC,故AE=EB()设正方形的边长为a,连结BF,BC为圆O的直径,BFEC,在RtBCE中,由射影定理得EFFC=BF2=,BF=,解得a=2,正方形ABCD的面积为4【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养 20【答案】 【解析】解:(1)f(x)=exax1(a0),f(x)=exa,由f(x)=exa=0得x=lna,由f(x)0得,xlna,此时函数单调递增,由f(x)0得,xlna,此时函数单调递减,即f(x)在x=lna处取得极小值且为最小值,最小值为f(lna)=elnaalna1=aalna1(2)若f(x)0对任意的xR恒成立,等价为f(x)min0,由(1)知,f(x)min=aalna1,设g(a)=aalna1,则g(a)=1lna1=lna,由g(a)=0得a=1,由g(x)0得,0x1,此时函数单调递增,由g(x)0得,x1,此时函数单调递减,g(a)在a=1处取得最大值,即g(1)=0,因此g(a)0的解为a=1,a=121【答案】 【解析】解:()由f(x)=f(x)得 kx22x=kx22x,k=0()g(x)=af(x)1=a2x1=(a2)x1当a21,即a1时,g(x)=(a2)x1在1,2上为增函数,g(x)最大值为g(2)=a41当a21,即0a1时,g(x)=(a2)x在1,2上为减函数,g(x)最大值为()由()得g(x)在x1,1上的最大值为,1t22mt+1即t22mt0在1,1上恒成立令h(m)=2mt+t2,即所以t(,202,+)【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题22【答案】(1)最大值为,最小值为;(2).【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简再利用的性质可求在上的最值;(2)利用,可得,再由余弦定理可得,再据正弦定理可得.1试题解析:(2)因为,即,又在中,由余弦定理得,所以.由正弦定理得:,即,所以.考点:1.辅助角公式;2.性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.23【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力(2)当时,假设存在实数,使有最小值3,7分当时,在上单调递减,(舍去)8分当时,在上单调递减,在上单调递增,满足条件10分当时,在上单调递减,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论