茄子河区二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
茄子河区二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
茄子河区二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
茄子河区二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
茄子河区二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷茄子河区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若函数f(x)=a(xx3)的递减区间为(,),则a的取值范围是( )Aa0B1a0Ca1D0a12 已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是( )ABCD03 由直线与曲线所围成的封闭图形的面积为( )AB1CD4 ABC的外接圆圆心为O,半径为2, +=,且|=|,在方向上的投影为( )A3BCD35 在定义域内既是奇函数又是减函数的是( )Ay=By=x+Cy=x|x|Dy=6 设函数f(x)的定义域为A,若存在非零实数l使得对于任意xI(IA),有x+lA,且f(x+l)f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为( )A0a1BaC1a1D2a27 数列1,4,7,10,13,的通项公式an为( )A2n1B3n+2C(1)n+1(3n2)D(1)n+13n28 函数f(x)=的定义域为( )A(,2)(1,+)B(2,1)C(,1)(2,+)D(1,2)9 已知复数z满足(3+4i)z=25,则=( )A34iB3+4iC34iD3+4i10过点P(2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有( )A3条B2条C1条D0条11已知集合A,B,C中,AB,AC,若B=0,1,2,3,C=0,2,4,则A的子集最多有( )A2个B4个C6个D8个12(理)已知tan=2,则=( )ABCD二、填空题13已知线性回归方程=9,则b=14已知直线5x+12y+m=0与圆x22x+y2=0相切,则m=15已知等差数列an中,a3=,则cos(a1+a2+a6)=16设O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|BF|,则=17如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是18(2)7的展开式中,x2的系数是三、解答题19已知直线l:xy+9=0,椭圆E: +=1,(1)过点M(,)且被M点平分的弦所在直线的方程;(2)P是椭圆E上的一点,F1、F2是椭圆E的两个焦点,当P在何位置时,F1PF2最大,并说明理由;(3)求与椭圆E有公共焦点,与直线l有公共点,且长轴长最小的椭圆方程20已知函数f(x)=sin(x+)+1(0,)的最小正周期为,图象过点P(0,1)()求函数f(x)的解析式;()设函数 g(x)=f(x)+cos2x1,将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值21在正方体中分别为的中点.(1)求证:平面;(2)求异面直线与所成的角.111.Com22某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:当年平均盈利额达到最大值时,以30万元价格处理该机床;当盈利额达到最大值时,以12万元价格处理该机床问哪种方案处理较为合理?请说明理由23在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C24已知函数f(x)=log2(m+)(mR,且m0)(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+)上单调递增,求m的取值范围 茄子河区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:函数f(x)=a(xx3)的递减区间为(,)f(x)0,x(,)恒成立即:a(13x2)0,x(,)恒成立13x20成立a0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决2 【答案】A【解析】解:取AB的中点C,连接OC,则AC=,OA=1sin =sinAOC=所以:AOB=120 则=11cos120=故选A3 【答案】D【解析】由定积分知识可得,故选D。4 【答案】C【解析】解:由题意, +=,得到,又|=|=|,OAB是等边三角形,所以四边形OCAB是边长为2的菱形,所以在方向上的投影为ACcos30=2=;故选C【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答5 【答案】C【解析】解:A.在定义域内没有单调性,该选项错误;B.时,y=,x=1时,y=0;该函数在定义域内不是减函数,该选项错误;Cy=x|x|的定义域为R,且(x)|x|=x|x|=(x|x|);该函数为奇函数;该函数在0,+),(,0)上都是减函数,且02=02;该函数在定义域R上为减函数,该选项正确;D.;0+101;该函数在定义域R上不是减函数,该选项错误故选:C【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性6 【答案】 B【解析】解:定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2=图象如图,f(x)为R上的1高调函数,当x0时,函数的最大值为a2,要满足f(x+l)f(x),1大于等于区间长度3a2(a2),13a2(a2),a故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题7 【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(1)n+1,绝对值为3n2,故通项公式an=(1)n+1(3n2)故选:C8 【答案】D【解析】解:由题意得:,解得:1x2,故选:D9 【答案】B解析:(3+4i)z=25,z=34i=3+4i故选:B10【答案】C【解析】解:假设存在过点P(2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则即2a2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=ab=8,即ab=16,联立,解得:a=4,b=4直线l的方程为:,即xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题11【答案】B【解析】解:因为B=0,1,2,3,C=0,2,4,且AB,AC;ABC=0,2集合A可能为0,2,即最多有2个元素,故最多有4个子集故选:B12【答案】D【解析】解:tan=2, =故选D二、填空题13【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题14【答案】8或18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案【解答】解:整理圆的方程为(x1)2+y2=1故圆的圆心为(1,0),半径为1直线与圆相切圆心到直线的距离为半径即=1,求得m=8或18故答案为:8或1815【答案】 【解析】解:数列an为等差数列,且a3=,a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3=,cos(a1+a2+a6)=cos=故答案是:16【答案】 【解析】解:O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,直线AB的方程为y=(x),l的方程为x=,联立,解得A(, P),B(,)直线OA的方程为:y=,联立,解得D(,)|BD|=,|OF|=, =故答案为:【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质17【答案】64 【解析】解:由图可知甲的得分共有9个,中位数为28甲的中位数为28乙的得分共有9个,中位数为36乙的中位数为36则甲乙两人比赛得分的中位数之和是64故答案为:64【点评】求中位数的关键是根据定义仔细分析另外茎叶图的茎是高位,叶是低位,这一点一定要注意18【答案】280 解:(2)7的展开式的通项为=由,得r=3x2的系数是故答案为:280三、解答题19【答案】 【解析】解:(1)设以点M(,)为中点的弦的端点为A(x1,y1),B(x2,y2),x1+x2=1,y1+y2=1,把A(x1,y1),B(x2,y2)代入椭圆E: +=1,得,kAB=,直线AB的方程为y=(x),即2x+8y5=0(2)设|PF1|=r1,|PF2|=r1,则cosF1PF2=1=1=1,又r1r2()2=a2(当且仅当r1=r2时取等号)当r1=r2=a,即P(0,)时,cosF1PF2最小,又F1PF2(0,),当P为短轴端点时,F1PF2最大(3)=12, =3, =9则由题意,设所求的椭圆方程为+=1(a29),将y=x+9代入上述椭圆方程,消去y,得(2a29)x2+18a2x+90a2a4=0,依题意=(18a2)24(2a29)(90a2a4)0,化简得(a245)(a29)0,a290,a245,故所求的椭圆方程为=1【点评】本题考查直线方程、椭圆方程的求法,考查当P在何位置时,F1PF2最大的判断与求法,是中档题,解题时要认真审题,注意根的判别式、余弦定理、椭圆性质的合理运用 20【答案】 【解析】解:()函数f(x)=sin(x+)+1(0,)的最小正周期为,=2,又由函数f(x)的图象过点P(0,1),sin=0,=0,函数f(x)=sin2x+1;()函数 g(x)=f(x)+cos2x1=sin2x+cos2x=sin(2x+),将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin2(x)+=sin(2x),x(0,m),2x(,2m),又由h(x)在区间(0,m)内是单调函数,2m,即m,即实数m的最大值为【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键21【答案】(1)证明见解析;(2)【解析】(2)延长于,使,连结为所求角.设正方体边长为,则,与所成的角为.考点:直线与平行的判定;异面直线所成的角的计算.【方法点晴】本题主要考查了直线与平面平行的判定与证明、空间中异面直线所成的角的计算,其中解答中涉及到平行四边形的性质、正方体的结构特征、解三角形的相关知识的应用,着重考查了学生的空间想象能力以及学生分析问题和解答问题的能力,本题的解答中根据异面直线所成的角找到角为异面直线所成的角是解答的一个难点,属于中档试题.22【答案】 【解析】解:(1)y=2x2+40x98,xN*(2)由2x2+40x980解得,且xN*,所以x=3,4,17,故从第三年开始盈利(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为272+40798+30=114(万元)由y=2x2+40x98=2(x10)2+102102,所以按第二方案处理总利润为102+12=114(万元)由于第一方案使用时间短,则选第一方案较合理23【答案】 【解析】解:()由题意知,tanA=,则=,即有sinAsinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;()因为三角形ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,由余弦定理得, =,由得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0C,则C+,即C+=,解得C= 【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论