2019版高考数学第3章导数及其应用5第5讲利用导数研究含参数不等式教案理.docx_第1页
2019版高考数学第3章导数及其应用5第5讲利用导数研究含参数不等式教案理.docx_第2页
2019版高考数学第3章导数及其应用5第5讲利用导数研究含参数不等式教案理.docx_第3页
2019版高考数学第3章导数及其应用5第5讲利用导数研究含参数不等式教案理.docx_第4页
2019版高考数学第3章导数及其应用5第5讲利用导数研究含参数不等式教案理.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5讲利用导数研究含参数不等式分离参数求参数范围 典例引领 (2018安徽省两校阶段性测试)已知函数f(x)ln x.(1)求函数g(x)f(x1)x的最大值;(2)若对任意x0,不等式f(x)axx21恒成立,求实数a的取值范围【解】(1)因为f(x)ln x.所以g(x)f(x1)xln(x1)x,x1.所以g(x)1.当x(1,0)时,g(x)0,所以g(x)在(1,0)上单调递增;当x(0,)时,g(x)0,所以g(x)在(0,)上单调递减所以g(x)在x0处取得最大值g(0)0.(2)因为对任意x0,不等式f(x)axx21恒成立所以在x0上恒成立,进一步转化为a.设h(x),则h(x),当x(1,e)时,h(x)0;当x(e,)时,h(x)0,所以h(x).要使f(x)ax恒成立,必须a.另一方面,当x0时,x2,要使axx21恒成立,必须a2,所以满足条件的a的取值范围是.利用分离参数法来确定不等式f(x,)0(xD,为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f1()f2(x)或f1()f2(x)的形式;(2)求f2(x)在xD时的最大值或最小值;(3)解不等式f1()f2(x)max或f1()f2(x)min,得到的取值范围 等价转化法求参数范围 典例引领 函数f(x)x22axln x(aR)(1)若函数yf(x)在点(1,f(1)处的切线与直线x2y10垂直,求a的值;(2)若不等式2xln xx2ax3在区间(0,e上恒成立,求实数a的取值范围【解】(1)函数f(x)的定义域为(0,),f(x)2x2a,f(1)32a,由题意f(1)(32a)1,解得a.(2)不等式2xln xx2ax3在区间(0,e上恒成立等价于2ln xxa.令g(x)2ln xxa,则g(x)1,则在区间(0,1)上,g(x)0,函数g(x)为增函数由题意知g(x)ming(1)1a30,得a4,所以实数a的取值范围是(,4根据不等式恒成立求参数范围的关键是把不等式转化为函数,利用函数值与最值之间的数量关系确定参数满足的不等式,解不等式即得参数范围 含全称与存在量词的不等式问题 典例引领 设f(x)xln x,g(x)x3x23.(1)如果存在x1,x20,2使得g(x1)g(x2)M成立,求满足上述条件的最大整数M;(2)如果对于任意的s,t,都有f(s)g(t)成立,求实数a的取值范围【解】(1)存在x1,x20,2使得g(x1)g(x2)M成立,等价于g(x1)g(x2)maxM.由g(x)x3x23,得g(x)3x22x3x.令g(x)0得x0,或x,令g(x)0得0x,又x0,2,所以g(x)在区间上单调递减,在区间上单调递增,所以g(x)ming,又g(0)3,g(2)1,所以g(x)maxg(2)1.故g(x1)g(x2)maxg(x)maxg(x)minM,则满足条件的最大整数M4.(2)对于任意的s,t,都有f(s)g(t)成立,等价于在区间上,函数f(x)ming(x)max,由(1)可知在区间上,g(x)的最大值为g(2)1.在区间上,f(x)xln x1恒成立等价于axx2ln x恒成立设h(x)xx2ln x,h(x)12xln xx,令m(x)xln x,由m(x)ln x10得x.即m(x)xln x在上是增函数,可知h(x)在区间上是减函数,又h(1)0,所以当1x2时,h(x)0;当x1时,h(x)0.即函数h(x)xx2ln x在区间上单调递增,在区间(1,2)上单调递减,所以h(x)maxh(1)1,所以a1,即实数a的取值范围是1,)(1)“恒成立”“存在性”问题一定要正确理解其实质,深刻挖掘内含条件,进行等价转化(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离参数的方法,转化为求函数的最值问题 不等式在某个区间上恒成立(存在性成立)问题的转化途径(1)f(x)a恒成立f(x)mina;存在x使f(x)a成立f(x)maxa.(2)f(x)b恒成立f(x)maxb,存在x使f(x)b成立f(x)minb.(3)f(x)g(x)恒成立F(x)min0.(4)任意x1M,任意x2N,f(x1)g(x2)f(x1)ming(x2)max;任意x1M,存在x2N,f(x1)g(x2)f(x1)ming(x2)min;存在x1M,存在x2N,f(x1)g(x2)f(x1)maxg(x2)min;存在x1M,任意x2N,f(x1)g(x2)f(x1)maxg(x2)max. 1设函数f(x)是奇函数f(x)(xR)的导函数,f(1)0,当x0时,xf(x)f(x)0成立的x的取值范围是()A(,1)(0,1)B(1,0)(1,)C(,1)(1,0)D(0,1)(1,)解析:选A.设yg(x)(x0),则g(x),当x0时,xf(x)f(x)0,所以 g(x)0,x1,所以 使得f(x)0成立的x的取值范围是(,1)(0,1),故选A.2已知函数f(x)x,g(x)2xa,若x1,x22,3,使得f(x1)g(x2),则实数a的取值范围是()Aa1 Ba1Ca2Da2解析:选A.由题意知f(x)ming(x)min(x2,3),因为f(x)min5,g(x)min4a,所以54a,即a1,故选A.3(2018贵州适应性考试)已知函数f(x)axex(aR),g(x).(1)求函数f(x)的单调区间;(2)x0(0,),使不等式f(x)g(x)ex成立,求a的取值范围解:(1)因为f(x)aex,xR.当a0时,f(x)0,f(x)在R上单调递减;当a0时,令f(x)0得xln a.由f(x)0得f(x)的单调递增区间为(,ln a);由f(x)0得f(x)的单调递减区间为(ln a,)(2)因为x0(0,),使不等式f(x)g(x)ex,则ax,即a.设h(x),则问题转化为a()max,由h(x),令h(x)0,则x.当x在区间(0,)内变化时,h(x),h(x)的变化情况如下表:x(0,)(,)h(x)0h(x)单调递增极大值单调递减由上表可知,当x时,函数h(x)有极大值,即最大值为.所以a.4(2017高考全国卷)设函数f(x)(1x2)ex.(1)讨论f(x)的单调性;(2)当x0时,f(x)ax1,求a的取值范围解:(1)f(x)(12xx2)ex.令f(x)0得x1,x1.当x(,1)时,f(x)0;当x(1,)时,f(x)0.所以f(x)在(,1),(1,)上单调递减,在(1,1)上单调递增(2)f(x)(1x)(1x)ex.当a1时,设函数h(x)(1x)ex,h(x)xex0),因此h(x)在0,)上单调递减,而h(0)1,故h(x)1,所以f(x)(x1)h(x)x1ax1.当0a0(x0),所以g(x)在0,)上单调递增,而g(0)0,故exx1.当0x(1x)(1x)2,(1x)(1x)2ax1x(1axx2),取x0,则x0(0,1),(1x0)(1x0)2ax010,故f(x0)ax01.当a0时,取x0,则x0(0,1),f(x0)(1x0)(1x0)21ax01.综上,a的取值范围是1,)1已知函数f(x)x(a1)ln x(aR),g(x)x2exxex.(1)当x1,e时,求f(x)的最小值;(2)当a1时,若存在x1e,e2,使得对任意的x22,0,f(x1)g(x2)成立,求a的取值范围解:(1)f(x)的定义域为(0,),f(x).当a1时,x1,e,f(x)0,f(x)为增函数,f(x)minf(1)1a.当1ae时,x1,a时,f(x)0,f(x)为减函数;xa,e时,f(x)0,f(x)为增函数;所以f(x)minf(a)a(a1)ln a1.当ae时,x1,e时,f(x)0,f(x)在1,e上为减函数f(x)minf(e)e(a1).综上,当a1时,f(x)min1a;当1ae时,f(x)mina(a1)ln a1;当ae时,f(x)mine(a1).(2)由题意知f(x)(xe,e2)的最小值小于g(x)(x2,0)的最小值由(1)知当a1时f(x)在e,e2上单调递增,f(x)minf(e)e(a1).g(x)(1ex)x.当x2,0时,g(x)0,g(x)为减函数,g(x)ming(0)1,所以e(a1),所以a的取值范围为.2(2018兰州模拟)已知函数f(x)ax2bxxln x的图象在(1,f(1)处的切线方程为3xy20.(1)求实数a,b的值;(2)设g(x)x2x,若kZ,且k(x2)f(x)g(x)对任意的x2恒成立,求k的最大值解:(1)f(x)2axb1ln x,所以2ab13且ab1,解得a1,b0.(2)由(1)与题意知k对任意的x2恒成立,设h(x)(x2),则h(x),令m(x)x42ln x(x2),则m(x)10,所以函数m(x)为(2,)上的增函数因为m(8)42ln 842

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论