




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江口县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知抛物线x2=2y的一条弦AB的中点坐标为(1,5),则这条弦AB所在的直线方程是( )Ay=x4By=2x3Cy=x6Dy=3x22 集合A=1,2,3,集合B=1,1,3,集合S=AB,则集合S的子集有( )A2个B3 个C4 个D8个3 若偶函数y=f(x),xR,满足f(x+2)=f(x),且x0,2时,f(x)=1x,则方程f(x)=log8|x|在10,10内的根的个数为( )A12B10C9D84 已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为( )AiBiC1D15 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A1:2:3B2:3:4C3:2:4D3:1:26 已知x,yR,且,则存在R,使得xcos+ysin+1=0成立的P(x,y)构成的区域面积为( )A4B4CD +7 已知角的终边经过点P(4,m),且sin=,则m等于( )A3B3CD38 已知数列an中,a1=1,an+1=an+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( ) An8?Bn9?Cn10?Dn11?9 在空间中,下列命题正确的是( )A如果直线m平面,直线n内,那么mnB如果平面内的两条直线都平行于平面,那么平面平面C如果平面外的一条直线m垂直于平面内的两条相交直线,那么mD如果平面平面,任取直线m,那么必有m10若直线:圆:交于两点,则弦长的最小值为( )A B C D11已知数列的各项均为正数,若数列的前项和为5,则( )A B C D12设f(x)与g(x)是定义在同一区间a,b上的两个函数,若函数y=f(x)g(x)在xa,b上有两个不同的零点,则称f(x)和g(x)在a,b上是“关联函数”,区间a,b称为“关联区间”若f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,则m的取值范围为( )A(,2B1,0C(,2D(,+)二、填空题13已知函数f(x)=x2+xb+(a,b为正实数)只有一个零点,则+的最小值为14在中,有等式:;.其中恒成立的等式序号为_.15设有一组圆Ck:(xk+1)2+(y3k)2=2k4(kN*)下列四个命题:存在一条定直线与所有的圆均相切;存在一条定直线与所有的圆均相交;存在一条定直线与所有的圆均不相交;所有的圆均不经过原点其中真命题的代号是(写出所有真命题的代号)16已知数列an中,2an,an+1是方程x23x+bn=0的两根,a1=2,则b5=17计算sin43cos13cos43sin13的值为18用“”或“”号填空:30.830.7三、解答题19如图所示,在正方体中(1)求与所成角的大小;(2)若、分别为、的中点,求与所成角的大小20已知p:2x23x+10,q:x2(2a+1)x+a(a+1)0(1)若a=,且pq为真,求实数x的取值范围(2)若p是q的充分不必要条件,求实数a的取值范围21已知椭圆C: +=1(ab0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切()求椭圆C的方程;()如图,若斜率为k(k0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线l过定点,并求出斜率k的取值范围22已知正项数列an的前n项的和为Sn,满足4Sn=(an+1)2()求数列an通项公式;()设数列bn满足bn=(nN*),求证:b1+b2+bn23(本小题满分13分)如图,已知椭圆:的离心率为,以椭圆的左顶点为圆心作圆:(),设圆与椭圆交于点、_k.Com(1)求椭圆的方程;(2)求的最小值,并求此时圆的方程;(3)设点是椭圆上异于、的任意一点,且直线,分别与轴交于点(为坐标原点),求证:为定值 【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力24已知P(m,n)是函授f(x)=ex1图象上任一于点()若点P关于直线y=x1的对称点为Q(x,y),求Q点坐标满足的函数关系式()已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数(s,t)=|sex11|+|tln(t1)|,(sR,t0)的最小值江口县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=2,x12=2y1,x22=2y2两式相减可得,(x1+x2)(x1x2)=2(y1y2)直线AB的斜率k=1,弦AB所在的直线方程是y+5=x+1,即y=x4故选A,2 【答案】C【解析】解:集合A=1,2,3,集合B=1,1,3,集合S=AB=1,3,则集合S的子集有22=4个,故选:C【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础3 【答案】D【解析】解:函数y=f(x)为偶函数,且满足f(x+2)=f(x),f(x+4)=f(x+2+2)=f(x+2)=f(x),偶函数y=f(x)为周期为4的函数,由x0,2时,f(x)=1x,可作出函数f(x)在10,10的图象,同时作出函数f(x)=log8|x|在10,10的图象,交点个数即为所求数形结合可得交点个为8,故选:D4 【答案】D【解析】解:由zi=1+i,得,z的虚部为1故选:D【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题5 【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2R3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2R3: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键6 【答案】 A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在R,使得xcos+ysin+1=0成立,则(cos+sin)=1,令sin=,则cos=,则方程等价为sin(+)=1,即sin(+)=,存在R,使得xcos+ysin+1=0成立,|1,即x2+y21,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=4,直线y=x的倾斜角为,则AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键综合性较强7 【答案】B【解析】解:角的终边经过点P(4,m),且sin=,可得,(m0)解得m=3故选:B【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查8 【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n9,故选B【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题9 【答案】 C【解析】解:对于A,直线m平面,直线n内,则m与n可能平行,可能异面,故不正确;对于B,如果平面内的两条相交直线都平行于平面,那么平面平面,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面平面,任取直线m,那么可能m,也可能m和斜交,;故选:C【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题10【答案】【解析】试题分析:直线,直线过定点,解得定点,当点(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.1111 11【答案】C 【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和由得,是等差数列,公差为,首项为,由得,数列的前项和为,选C12【答案】A【解析】解:f(x)=x23x+4与g(x)=2x+m在0,3上是“关联函数”,故函数y=h(x)=f(x)g(x)=x25x+4m在0,3上有两个不同的零点,故有,即,解得m2,故选A【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题二、填空题13【答案】9+4 【解析】解:函数f(x)=x2+xb+只有一个零点,=a4(b+)=0,a+4b=1,a,b为正实数,+=(+)(a+4b)=9+9+2=9+4当且仅当=,即a=b时取等号,+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题14【答案】【解析】 试题分析:对于中,由正弦定理可知,推出或,所以三角形为等腰三角形或直角三角形,所以不正确;对于中,即恒成立,所以是正确的;对于中,可得,不满足一般三角形,所以不正确;对于中,由正弦定理以及合分比定理可知是正确,故选选1考点:正弦定理;三角恒等变换15【答案】 【解析】解:根据题意得:圆心(k1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项正确;考虑两圆的位置关系,圆k:圆心(k1,3k),半径为k2,圆k+1:圆心(k1+1,3(k+1),即(k,3k+3),半径为(k+1)2,两圆的圆心距d=,两圆的半径之差Rr=(k+1)2k2=2k+,任取k=1或2时,(Rrd),Ck含于Ck+1之中,选项错误;若k取无穷大,则可以认为所有直线都与圆相交,选项错误;将(0,0)带入圆的方程,则有(k+1)2+9k2=2k4,即10k22k+1=2k4(kN*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项正确则真命题的代号是故答案为:【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题16【答案】1054 【解析】解:2an,an+1是方程x23x+bn=0的两根,2an+an+1=3,2anan+1=bn,a1=2,a2=1,同理可得a3=5,a4=7,a5=17,a6=31则b5=217(31)=1054故答案为:1054【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题17【答案】 【解析】解:sin43cos13cos43sin13=sin(4313)=sin30=,故答案为18【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题三、解答题19【答案】(1);(2)【解析】试题解析:(1)连接,由是正方体,知为平行四边形,所以,从而与所成的角就是与所成的角由可知,即与所成的角为考点:异面直线的所成的角【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题20【答案】 【解析】解:p:,q:axa+1;(1)若a=,则q:;pq为真,p,q都为真;,;实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;,;实数a的取值范围为【点评】考查解一元二次不等式,pq真假和p,q真假的关系,以及充分不必要条件的概念21【答案】 【解析】()解:椭圆的左,右焦点分别为F1(c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b=c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;()证明:设Q(x1,y1),R(x2,y2),F1(1,0),由RF1F2=PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t22=0,判别式=16k2t24(1+2k2)(2t22)0,即为t22k21x1+x2=,x1x2=,y1=kx1+t,y2=kx2+t,代入可得,(k+t)(x1+x2)+2t+2kx1x2=0,将代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2)即有直线l恒过定点(2,0)将t=2k代入,可得2k21,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 空调工程考试题及答案
- 铸管退火工专项考核试卷及答案
- 快递设备运维师职业技能考核试卷及答案
- 烧结球团原料工应急处置考核试卷及答案
- 光纤套塑工突发故障应对考核试卷及答案
- 粉矿烧结工测试考核试卷及答案
- 碳五正异构分离装置操作工基础知识考核试卷及答案
- 今日律师考试题及答案
- 磨毛(绒)机挡车工标准化作业考核试卷及答案
- 钒氮合金工职业技能考核试卷及答案
- 项目部商务管理办法
- 2025时政考试题及答案
- 精麻药品培训知识课件
- 2025-2026学年人教版(2024)小学美术一年级上册教学计划及进度表
- 超市安全知识培训课件模板
- 医院不良事件培训课件
- 仪表工安全基础知识培训课件
- 光电检测技术及应用 周秀云
- 环境反应工程导论课件
- VW 50134-EN-2024 PA6用于车辆内部外部的成品零件 材料要求
- 山东省国企资产管理办法
评论
0/150
提交评论